logo

Geometrische vormen in wiskunde

Geometrische vormen: Geometrische vormen zijn de figuren die in de wiskunde worden gebruikt om de vormen van dingen uit de echte wereld weer te geven. Vormen zijn de vormen van dingen in de geometrie die grenzen, hoeken en oppervlakken hebben.

Er zijn twee soorten geometrische figuren:



  • 2D-vormen (tweedimensionaal)
  • 3D-vormen (driedimensionaal)

Vormen zijn ook onderverdeeld in twee typen op basis van hun regelmaat of uniformiteit.

  • Regelmatige vormen – Symmetrische vormen zoals vierkanten, cirkels, enz.
  • Onregelmatige vormen – Asymmetrische vormen of vrije vormen.

Inhoudsopgave

Lijst met geometrische vormen

Naam Type Randen Hoekpunten Gezichten
Vierkant 2D 4 4
Rechthoek 2D 4 4
Driehoek 2D 3 3
Cirkel 2D Gebogen 0
Pentagon 2D 5 5
Zeshoek 2D 6 6
Kubus 3D 12 8 6
Kubusvormig 3D 12 8 6
Kegel 3D 1 1 2
Cilinder r 3D 2 0 3
Gebied 3D Gebogen 0 1

Typen en eigenschappen van geometrische vormen

Geometrische vormen zijn essentieel voor het begrijpen van de wereld om ons heen en spelen een cruciale rol in verschillende disciplines, van kunst tot techniek. Hier is een overzicht van de belangrijkste soorten geometrische vormen en hun eigenschappen:



2D-vormen

Naam Figuur Definitie
Vierkant Een vierkant is een 2D-figuur bestaande uit 4 gelijke zijden en gelijke hoeken, waarbij elke hoek gelijk is aan 90°.
Rechthoek Een rechthoek is een 2D-figuur met 4 zijden waarbij de tegenoverliggende zijden gelijk zijn en elke hoek gelijk is aan 90°.
Driehoek Een driehoek is een 2D-figuur omsloten door 3 zijden en bestaat uit 3 randen en 3 hoekpunten en heeft de som van de 3 hoeken gelijk aan 180.
Cirkel Een cirkel is een gesloten 2D-figuur met een ronde vorm zonder zijden en hoeken.
ovaal Een ovaal is ook een gesloten 2D-figuur die enigszins lijkt op een cirkel, maar enigszins langwerpig is. Het heeft niet
Parallellogram Een parallellogram is een vierhoek met twee paar evenwijdige zijden en gelijke tegenoverliggende hoeken.
Trapezium Een trapezium is een vierhoek waarvan één paar tegenoverliggende zijden evenwijdig is.
Ruit Ruit is een soort vierhoek. Het is een speciaal parallellogram met vier gelijke zijden en de diagonalen snijden elkaar in een hoek van 90.
Zien Vlieger is een vierhoek met twee paar gelijke aangrenzende zijden.

Soorten veelhoeken

Vormen Figuren
Driehoek
Vierhoek
Pentagon
Zeshoek
Septagon
Achthoek
Nonagon
Tienhoek

3D-vormen

Namen van geometrische 3D-vormen Figuur Definitie
Kubus

Een kubus is een driedimensionale vorm met zes vlakken, acht hoekpunten en twaalf randen. De vlakken van de kubus zijn vierkant.

Voorbeeld: Een Rubiks kubus

Avl boom
Kubusvormig

Een kubus is een driedimensionaal lichaam met zes rechthoekige vlakken, acht hoekpunten en twaalf randen.



Voorbeeld: Matchbox

Kegel

Een kegel is een vaste stof met een cirkelvormige basis en een puntige rand aan de bovenkant, de top of hoekpunt.

Voorbeeld: een ijshoorntje

Cilinder

Een cilinder is een vaste 3D-vorm met twee parallelle cirkelvormige bases die met elkaar zijn verbonden door een gebogen oppervlak. Het heeft geen toppunt.

Voorbeeld: gasfles

Gebied

Een bol is een ronde vorm in een 3D-vlak, die eruitziet als een bal. De straal strekt zich uit in drie dimensies (x-as, y-as, z-as).

Voorbeeld: bal

Lijst en eigenschappen van geometrische vormen

De lijst met geometrische vormen, samen met hun randen, hoekpunten en vlakken, wordt hieronder gegeven.

Open en gesloten figuren

Gesloten vormen

Geometrische basisvormen zoals vierkanten, rechthoeken en driehoeken zijn enkele 2D-vormen. Deze figuren worden polygonen genoemd. Elke platte vorm of vlak op een stuk papier is een veelhoek. Ze hebben eindige, gesloten grenzen die bestaan ​​uit lijnsegmenten die bekend staan ​​als zijden van de veelhoek. Geometrische figuren zoals polygonen staan ​​bekend als gesloten figuren. De grens van een gesloten figuur kan bestaan ​​uit lijnsegmenten of curven . Daarom wordt elk geometrisch object dat op dezelfde locatie begint en eindigt en een grens vormt met lijnsegmenten of curven, als een gesloten figuur beschouwd.

Vormen openen

Open vormen zijn niet compleet. Om een ​​gesloten figuur te kunnen tekenen, moet aan het begin- en eindpunt worden voldaan. Het gebruik van lijnsegmenten of curven om open figuren weer te geven is een andere optie, maar de lijnen worden dan tenminste opgebroken. De oorsprong en bestemming van een open figuur zijn verschillend.

latex tekstformaten

Cijfers openen

Toepassingen van geometrische vormen

  • Wiskunde : Het begrijpen van eigenschappen van vormen helpt bij het bestuderen van geometrie, inclusief berekeningen voor oppervlakte, volume en andere dimensionale analyses.
  • Techniek en Architectuur : Vormen vormen de basis van ontwerp en constructie en beïnvloeden de sterkte, esthetiek en functionaliteit van constructies.
  • Kunst en ontwerp : Kunstenaars en ontwerpers gebruiken geometrische vormen om visuele interesse en structuur in hun werken te creëren.

Conclusie van geometrische vormen

Geometrische vormen zijn basiselementen in de geometrie en worden hoofdzakelijk in twee typen verdeeld: 2D- en 3D-vormen. 2D-vormen, zoals cirkels, driehoeken, vierkanten, rechthoeken en polygonen, zijn plat en hebben alleen lengte en breedte. Ze worden gedefinieerd door hun randen (de rechte lijnen die hun grenzen vormen), hoekpunten (de hoeken waar de randen samenkomen) en interne hoeken (de hoeken binnen de vorm). 3D-vormen, zoals bollen, kubussen, cilinders, kegels en piramides, voegen diepte toe aan de lengte en breedte, waardoor een derde dimensie ontstaat. Deze vormen hebben vlakken (platte of gebogen oppervlakken), randen (waar twee vlakken samenkomen) en hoekpunten (hoeken waar randen samenkomen).

Lees verder,

Geometrische vormen – Veelgestelde vragen

Wat zijn verschillende geometrische vormen in wiskunde?

Er zijn verschillende geometrische vormen zoals cirkel, vierkant, rechthoek, vlieger, driehoek etc. zijn de standaard 2D-vormen, terwijl kubus, kubusvormig, kegel, cilinder en bol de standaard 3D-vormen zijn.

Noem verschillende soorten polygonen.

De verschillende polygonen zijn:

  • Driehoek
  • Vierhoeken [vierkant, rechthoek, parallellogram, trapezium, vlieger]
  • Pentagon
  • Zeshoek

Geef een paar voorbeelden uit de praktijk van 3D-vormen.

Enkele voorbeelden zijn:

  • Kubus – Suikerklontje, Rubiks kubus
  • Cuboid- Een houten rechthoekige doos, luciferdoosje
  • Kegel-ijshoorntje, piramide
  • Bol-voetbal, basketbal
  • Cilinder- Gasfles, cilindrische pot

Wat zijn fundamentele vaste vormen?

De vaste basisvormen zijn kubus, kubusvormig, kegel, bol, halfrond en cilinder.