Gegeven twee snaren s1 En s2 . De taak is om verwijderen/verwijderen En invoegen de minimaal aantal tekens van s1 om het in te transformeren s2 . Het zou mogelijk kunnen zijn dat de hetzelfde karakter moet vanaf één punt worden verwijderd/gewist s1 en op een ander punt ingevoegd.
Voorbeeld 1:
Invoer: s1 = 'hoop' s2 =
Uitgang: 3
Uitleg: Minimale verwijdering = 2 en minimale invoeging = 1
p en h worden van de heap verwijderd en vervolgens wordt p aan het begin ingevoegd. Eén ding om op te merken, hoewel p nodig was, werd het eerst uit zijn positie verwijderd/verwijderd en vervolgens in een andere positie ingevoegd. Dus p draagt één bij aan het aantal verwijderingen en één aan het aantal invoegingen.Invoer: s1 = 'nerds voor nerds' s2 = 'nerds'
Uitgang: 8
Uitleg: 8 verwijderingen, d.w.z. verwijder alle karakters van de string 'forgeeks'.
Inhoudsopgave
- Recursie gebruiken - O(2^n) Tijd en O(n) Ruimte
- DP van bovenaf gebruiken (memoriseren) - O(n^2) tijd en O(n^2) ruimte
- Bottom-up DP gebruiken (tabellering) - O(n^2) tijd en O(n^2) ruimte
- Bottom-up DP gebruiken (ruimte-optimalisatie) – O(n^2) tijd en O(n) ruimte
Recursie gebruiken - O(2^n) Tijd en O(n) Ruimte
C++Een eenvoudige aanpak om het probleem op te lossen, is het genereren van alles deelreeksen van s1 en voor elke deelreeks het berekenen van de minimum verwijderingen en invoegingen die nodig zijn om het in s2 te transformeren. Een efficiënte aanpak maakt gebruik van het concept van langste gemeenschappelijke deelreeks (LCS) om de lengte van de langste LCS te vinden. Zodra we LCS van twee strings hebben, kunnen we deze vinden Minimale invoeging En Verwijderingen om s1 om te zetten in s2.
- Naar minimaliseer verwijderingen we hoeven alleen maar tekens te verwijderen s1 die geen deel uitmaken van de langste gemeenschappelijke deelreeks (LCS) met s2 . Dit kan worden bepaald door aftrekken de LCS-lengte vanaf de lengte van s1 . Het minimumaantal verwijderingen is dus:
minDeletions = lengte van s1 - LCS-lengte.- Vergelijkbaar met minimaliseer invoegingen we hoeven alleen maar tekens in te voegen uit s2 naar binnen s1 die geen deel uitmaken van de LCS. Dit kan worden bepaald door aftrekken de LCS-lengte vanaf de lengte van s2 . Het minimumaantal invoegingen is dus:
minInsertions = lengte van s2 - LCS-lengte.
// C++ program to find the minimum number of insertion and deletion // using recursion. #include using namespace std; int lcs(string &s1 string &s2 int m int n) { // Base case: If either string is empty // the LCS length is 0 if (m == 0 || n == 0) return 0; // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) // Include the matching character in LCS and // recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); else // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // the length of the LCS for s1[0..m-1] // and s2[0..n-1] int len = lcs(s1 s2 m n); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum number of insertions and // deletions using recursion. class GfG { static int lcs(String s1 String s2 int m int n) { // Base case: If either string is empty the LCS // length is 0 if (m == 0 || n == 0) { return 0; } // If the last characters of both substrings match if (s1.charAt(m - 1) == s2.charAt(n - 1)) { // Include the matching character in LCS // and recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); } else { // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return Math.max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // the length of LCS for s1[0..m-1] and // s2[0..n-1] int len = lcs(s1 s2 m n); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s2 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } public static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum number of insertions # and deletions using recursion def lcs(s1 s2 m n): # Base case: If either string is empty # the LCS length is 0 if m == 0 or n == 0: return 0 # If the last characters of both substrings match if s1[m - 1] == s2[n - 1]: # Include the matching character in LCS and # recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1) else: # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 return max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)) def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of LCS for s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2 m n) # Characters to delete from str1 minDeletions = m - lengthLcs # Characters to insert into str1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions if __name__ == '__main__': s1 = 'AGGTAB' s2 = 'GXTXAYB' result = minOperations(s1 s2) print(result)
C# // C# program to find the minimum number of insertions and // deletions using recursion. using System; class GfG { static int lcs(string s1 string s2 int m int n) { // Base case: If either string is empty the LCS // length is 0 if (m == 0 || n == 0) return 0; // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) { // Include the matching character in LCS // and recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); } else { // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return Math.Max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // the length of LCS for s1[0..m-1] and // s2[0..n-1] int lengthLcs = lcs(s1 s2 m n); // Characters to delete from s1 int minDeletions = m - lengthLcs; // Characters to insert into s2 int minInsertions = n - lengthLcs; // Total operations needed return minDeletions + minInsertions; } static void Main(string[] args) { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int result = minOperations(s1 s2); Console.WriteLine(result); } }
JavaScript // JavaScript program to find the minimum number of // insertions and deletions using recursion function lcs(s1 s2 m n) { // Base case: If either string is empty the LCS length // is 0 if (m === 0 || n === 0) { return 0; } // If the last characters of both substrings match if (s1[m - 1] === s2[n - 1]) { // Include the matching character in LCS and recurse // for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1); } else { // If the last characters do not match find the // maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return Math.max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } } function minOperations(s1 s2) { const m = s1.length; const n = s2.length; // Length of the LCS const len = lcs(s1 s2 m n); // Characters to delete from s1 const minDeletions = m - len; // Characters to insert into s1 const minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res);
Uitvoer
5
DP van bovenaf gebruiken (memoriseren) - O(n^2) tijd en O(n^2) ruimte
C++In deze aanpak passen wij toe memoriseren om de resultaten van overlappende subproblemen op te slaan tijdens het vinden van de Longest Common Subsequence (LCS). A 2D-array memo wordt gebruikt om de LCS lengtes voor verschillende substrings van de twee invoerstrings, zodat elk subprobleem slechts één keer wordt opgelost.
Deze methode is vergelijkbaar met Langste gemeenschappelijke vervolgreeks (LCS) probleem met het gebruik van memorisatie.
// C++ program to find the minimum of insertion and deletion // using memoization. #include #include using namespace std; int lcs(string &s1 string &s2 int m int n vector<vector<int>> &memo) { // Base case: If either string is empty the LCS length is 0 if (m == 0 || n == 0) return 0; // If the value is already computed return // it from the memo array if(memo[m][n]!=-1) return memo[m][n]; // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) // Include the matching character in LCS and recurse for // remaining substrings return memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); else // If the last characters do not match find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 return memo[m][n] = max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // Initialize the memoization array with -1. vector<vector<int>> memo = vector<vector<int>> (m+1vector<int>(n+1-1)); // the length of the LCS for // s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2 m n memo); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum of insertion and deletion // using memoization. class GfG { static int lcs(String s1 String s2 int m int n int[][] memo) { // Base case: If either string is empty // the LCS length is 0 if (m == 0 || n == 0) { return 0; } // If the value is already computed return it // from the memo array if (memo[m][n] != -1) { return memo[m][n]; } // If the last characters of both substrings match if (s1.charAt(m - 1) == s2.charAt(n - 1)) { // Include the matching character in LCS and recurse for // remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); } else { // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 memo[m][n] = Math.max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } return memo[m][n]; } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // Initialize the memoization array with -1 // (indicating uncalculated values) int[][] memo = new int[m + 1][n + 1]; for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { memo[i][j] = -1; } } // the length of LCS for s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2 m n memo); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum number of insertions and # deletions using memoization def lcs(s1 s2 m n memo): # Base case: If either string is empty the LCS length is 0 if m == 0 or n == 0: return 0 # If the value is already computed # return it from the memo array if memo[m][n] != -1: return memo[m][n] # If the last characters of both substrings match if s1[m - 1] == s2[n - 1]: # Include the matching character in LCS and # recurse for remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo) else: # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 memo[m][n] = max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)) # Return the computed value return memo[m][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # Initialize the memoization array with -1 # (indicating uncalculated values) memo = [[-1 for _ in range(n + 1)] for _ in range(m + 1)] # Calculate the length of LCS for s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2 m n memo) # Characters to delete from s1 minDeletions = m - lengthLcs # Characters to insert into s1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions if __name__ == '__main__': s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res)
C# // C# program to find the minimum of insertion and deletion // using memoization. using System; class GfG { static int lcs(string s1 string s2 int m int n int[ ] memo) { // Base case: If either string is empty the LCS // length is 0 if (m == 0 || n == 0) { return 0; } // If the value is already computed return it from // the memo array if (memo[m n] != -1) { return memo[m n]; } // If the last characters of both substrings match if (s1[m - 1] == s2[n - 1]) { // Include the matching character in LCS and // recurse for remaining substrings memo[m n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); } else { // If the last characters do not match find the // maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 memo[m n] = Math.Max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } // Return the computed value return memo[m n]; } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // Initialize the memoization array with -1 // (indicating uncalculated values) int[ ] memo = new int[m + 1 n + 1]; for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { memo[i j] = -1; } } // Calculate the length of LCS for s1[0..m-1] and // s2[0..n-1] int lengthLcs = lcs(s1 s2 m n memo); // Characters to delete from s1 int minDeletions = m - lengthLcs; // Characters to insert into s1 int minInsertions = n - lengthLcs; // Total operations needed return minDeletions + minInsertions; } static void Main(string[] args) { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); Console.WriteLine(res); } }
JavaScript // JavaScript program to find the minimum number of // insertions and deletions using memoization function lcs(s1 s2 m n memo) { // Base case: If either string is empty the LCS length // is 0 if (m === 0 || n === 0) { return 0; } // If the value is already computed return it from the // memo array if (memo[m][n] !== -1) { return memo[m][n]; } // If the last characters of both substrings match if (s1[m - 1] === s2[n - 1]) { // Include the matching character in LCS and recurse // for remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo); } else { // If the last characters do not match find the // maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 memo[m][n] = Math.max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)); } return memo[m][n]; } function minOperations(s1 s2){ const m = s1.length; const n = s2.length; // Initialize the memoization array with -1 (indicating // uncalculated values) const memo = Array.from({length : m + 1} () => Array(n + 1).fill(-1)); // Calculate the length of LCS for s1[0..m-1] and // s2[0..n-1] const len = lcs(s1 s2 m n memo); // Characters to delete from s1 const minDeletions = m - len; // Characters to insert into s1 const minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res);
Uitvoer
5
Bottom-up DP gebruiken (tabellering) - O(n^2) tijd en O(n^2) ruimte
C++De aanpak is vergelijkbaar met die van vorige gewoon in plaats van het probleem op te lossen recursief Wij iteratief bouw de oplossing op door in te rekenen van onderop wijze. Wij onderhouden een 2D dp[][] tafel zodanig dat dp[i][j] de Langste gemeenschappelijke vervolgreeks (LCS) voor de deelprobleem(i j) .
Deze aanpak is vergelijkbaar met vinden LCS op een bottom-up manier .
// C++ program to find the minimum of insertion and deletion // using tabulation. #include #include using namespace std; int lcs(string &s1 string &s2) { int m = s1.size(); int n = s2.size(); // Initializing a matrix of size (m+1)*(n+1) vector<vector<int>> dp(m + 1 vector<int>(n + 1 0)); // Building dp[m+1][n+1] in bottom-up fashion for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s1[i - 1] == s2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]); } } // dp[m][n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m][n]; } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // the length of the LCS for // s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum of insertion and // deletion using tabulation. class GfG { static int lcs(String s1 String s2) { int m = s1.length(); int n = s2.length(); // Initializing a matrix of size (m+1)*(n+1) int[][] dp = new int[m + 1][n + 1]; // Building dp[m+1][n+1] in bottom-up fashion for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s1.charAt(i - 1) == s2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = Math.max(dp[i - 1][j] dp[i][j - 1]); } } // dp[m][n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m][n]; } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // the length of the LCS for s1[0..m-1] and // str2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } public static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum of insertion and deletion # using tabulation. def lcs(s1 s2): m = len(s1) n = len(s2) # Initializing a matrix of size (m+1)*(n+1) dp = [[0] * (n + 1) for _ in range(m + 1)] # Building dp[m+1][n+1] in bottom-up fashion for i in range(1 m + 1): for j in range(1 n + 1): if s1[i - 1] == s2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]) # dp[m][n] contains length of LCS for # s1[0..m-1] and s2[0..n-1] return dp[m][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of the LCS for # s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2) # Characters to delete from s1 minDeletions = m - lengthLcs # Characters to insert into s1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res)
C# // C# program to find the minimum of insertion and deletion // using tabulation. using System; class GfG { static int Lcs(string s1 string s2) { int m = s1.Length; int n = s2.Length; // Initializing a matrix of size (m+1)*(n+1) int[ ] dp = new int[m + 1 n + 1]; // Building dp[m+1][n+1] in bottom-up fashion for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (s1[i - 1] == s2[j - 1]) dp[i j] = dp[i - 1 j - 1] + 1; else dp[i j] = Math.Max(dp[i - 1 j] dp[i j - 1]); } } // dp[m n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m n]; } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // the length of the LCS for s1[0..m-1] and // s2[0..n-1] int len = Lcs(s1 s2); // Characters to delete from str1 int minDeletions = m - len; // Characters to insert into str1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } static void Main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); Console.WriteLine(res); } }
JavaScript // JavaScript program to find the minimum of insertion and // deletion using tabulation. function lcs(s1 s2) { let m = s1.length; let n = s2.length; // Initializing a matrix of size (m+1)*(n+1) let dp = Array(m + 1).fill().map( () => Array(n + 1).fill(0)); // Building dp[m+1][n+1] in bottom-up fashion for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { if (s1[i - 1] === s2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1; else dp[i][j] = Math.max(dp[i - 1][j] dp[i][j - 1]); } } // dp[m][n] contains length of LCS for s1[0..m-1] and // s2[0..n-1] return dp[m][n]; } function minOperations(s1 s2) { let m = s1.length; let n = s2.length; // the length of the LCS for s1[0..m-1] and s2[0..n-1] let len = lcs(s1 s2); // Characters to delete from s1 let minDeletions = m - len; // Characters to insert into s1 let minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } let s1 = 'AGGTAB'; let s2 = 'GXTXAYB'; let res = minOperations(s1 s2); console.log(res);
Uitvoer
5
Bottom-up DP gebruiken (ruimte-optimalisatie) – O(n^2) tijd en O(n) ruimte
C++Bij de vorige aanpak was de langste gemeenschappelijke deelreeks (LCS) algoritme gebruikt O(n * n) ruimte om het geheel op te bergen dp-tabel . Maar aangezien elke waarde in dp[i][j ] hangt alleen af van de huidige rij en de vorige rij we hoeven niet de hele tafel op te bergen. Dit kan worden geoptimaliseerd door alleen de huidige en vorige rijen op te slaan. Voor meer details, zie Een ruimte-geoptimaliseerde oplossing van LCS .
// C++ program to find the minimum of insertion and deletion // using space optimized. #include using namespace std; int lcs(string &s1 string &s2) { int m = s1.length() n = s2.length(); vector<vector<int>> dp(2 vector<int>(n + 1)); for (int i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 bool curr = i & 1; for (int j = 0; j <= n; j++) { // Initialize first row and first column with 0 if (i == 0 || j == 0) dp[curr][j] = 0; else if (s1[i - 1] == s2[j - 1]) dp[curr][j] = dp[1 - curr][j - 1] + 1; else dp[curr][j] = max(dp[1 - curr][j] dp[curr][j - 1]); } } return dp[m & 1][n]; } int minOperations(string s1 string s2) { int m = s1.size(); int n = s2.size(); // the length of the LCS for s1[0..m-1] and s2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed int total = minDeletions + minInsertions; return total; } int main() { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); cout << res; return 0; }
Java // Java program to find the minimum of insertion and // deletion using space optimized. class GfG { static int lcs(String s1 String s2) { int m = s1.length(); int n = s2.length(); // Initializing a 2D array with size (2) x (n + 1) int[][] dp = new int[2][n + 1]; for (int i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 int curr = i % 2; for (int j = 0; j <= n; j++) { // Initialize first row and first column // with 0 if (i == 0 || j == 0) dp[curr][j] = 0; else if (s1.charAt(i - 1) == s2.charAt(j - 1)) dp[curr][j] = dp[1 - curr][j - 1] + 1; else dp[curr][j] = Math.max(dp[1 - curr][j] dp[curr][j - 1]); } } return dp[m % 2][n]; } static int minOperations(String s1 String s2) { int m = s1.length(); int n = s2.length(); // the length of the LCS for s1[0..m-1] and // s2[0..n-1] int len = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - len; // Characters to insert into s1 int minInsertions = n - len; // Total operations needed return minDeletions + minInsertions; } public static void main(String[] args) { String s1 = 'AGGTAB'; String s2 = 'GXTXAYB'; int res = minOperations(s1 s2); System.out.println(res); } }
Python # Python program to find the minimum of insertion and deletion # using space optimized. def lcs(s1 s2): m = len(s1) n = len(s2) # Initializing a matrix of size (2)*(n+1) dp = [[0] * (n + 1) for _ in range(2)] for i in range(m + 1): # Compute current binary index. If i is even # then curr = 0 else 1 curr = i % 2 for j in range(n + 1): # Initialize first row and first column with 0 if i == 0 or j == 0: dp[curr][j] = 0 # If the last characters of both substrings match elif s1[i - 1] == s2[j - 1]: dp[curr][j] = dp[1 - curr][j - 1] + 1 # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 else: dp[curr][j] = max(dp[1 - curr][j] dp[curr][j - 1]) # dp[m & 1][n] contains length of LCS for s1[0..m-1] and s2[0..n-1] return dp[m % 2][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of the LCS for s1[0..m-1] and s2[0..n-1] length = lcs(s1 s2) # Characters to delete from s1 minDeletions = m - length # Characters to insert into s1 minInsertions = n - length # Total operations needed return minDeletions + minInsertions s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res)
C# // C# program to find the minimum of insertion and deletion // using space optimized. using System; class GfG { static int lcs(string s1 string s2) { int m = s1.Length; int n = s2.Length; // Initializing a matrix of size (2)*(n+1) int[][] dp = new int[2][]; dp[0] = new int[n + 1]; dp[1] = new int[n + 1]; for (int i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 int curr = i % 2; for (int j = 0; j <= n; j++) { // Initialize first row and first column // with 0 if (i == 0 || j == 0) dp[curr][j] = 0; // If the last characters of both substrings // match else if (s1[i - 1] == s2[j - 1]) dp[curr][j] = dp[1 - curr][j - 1] + 1; // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 else dp[curr][j] = Math.Max(dp[1 - curr][j] dp[curr][j - 1]); } } // dp[m & 1][n] contains length of LCS for // s1[0..m-1] and s2[0..n-1] return dp[m % 2][n]; } static int minOperations(string s1 string s2) { int m = s1.Length; int n = s2.Length; // the length of the LCS for s1[0..m-1] and // s2[0..n-1] int length = lcs(s1 s2); // Characters to delete from s1 int minDeletions = m - length; // Characters to insert into s1 int minInsertions = n - length; // Total operations needed return minDeletions + minInsertions; } static void Main(string[] args) { string s1 = 'AGGTAB'; string s2 = 'GXTXAYB'; int res = minOperations(s1 s2); Console.WriteLine(res); } }
JavaScript // JavaScript program to find the minimum of insertion and // deletion using space optimized. function lcs(s1 s2) { const m = s1.length; const n = s2.length; // Initializing a matrix of size (2)*(n+1) const dp = Array(2).fill().map(() => Array(n + 1).fill(0)); for (let i = 0; i <= m; i++) { // Compute current binary index. If i is even // then curr = 0 else 1 const curr = i % 2; for (let j = 0; j <= n; j++) { // Initialize first row and first column with 0 if (i === 0 || j === 0) dp[curr][j] = 0; // If the last characters of both substrings // match else if (s1[i - 1] === s2[j - 1]) dp[curr][j] = dp[1 - curr][j - 1] + 1; // If the last characters do not match // find the maximum LCS length by: // 1. Excluding the last character of s1 // 2. Excluding the last character of s2 else dp[curr][j] = Math.max(dp[1 - curr][j] dp[curr][j - 1]); } } // dp[m & 1][n] contains length of LCS for s1[0..m-1] // and s2[0..n-1] return dp[m % 2][n]; } function minOperations(s1 s2) { const m = s1.length; const n = s2.length; // the length of the LCS for s1[0..m-1] and s2[0..n-1] const length = lcs(s1 s2); // Characters to delete from s1 const minDeletions = m - length; // Characters to insert into s1 const minInsertions = n - length; // Total operations needed return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res);
Uitvoer
5Quiz maken