logo

Wiskundesymbolen – Basiswiskundesymbolen

Wiskundige symbolen zijn cijfers of combinaties van cijfers die wiskundige objecten, acties of relaties vertegenwoordigen. Ze worden gebruikt om wiskundige problemen snel en gemakkelijk op te lossen.

De basis van de wiskunde ligt in de symbolen en cijfers. De symbolen in de wiskunde worden gebruikt om verschillende wiskundige bewerkingen uit te voeren. De symbolen helpen ons een relatie tussen twee of meer grootheden te definiëren. Dit artikel behandelt enkele basiswiskundige symbolen, samen met hun beschrijvingen en voorbeelden.



Inhoudsopgave

Symbolen in wiskunde

Symbolen zijn de basisbehoefte om verschillende bewerkingen in de wiskunde uit te voeren. Er wordt een breed scala aan symbolen gebruikt in de wiskunde met verschillende betekenissen en toepassingen. Sommige symbolen die in de wiskunde worden gebruikt, hebben zelfs vooraf gedefinieerde waarden of betekenissen. ‘Z’ is bijvoorbeeld een symbool dat wordt gebruikt om gehele getallen te bepalen, op dezelfde manier pi of Pi is een vooraf gedefinieerd symbool waarvan de waarde 22/7 of 3,14 is.



Symbolen dienen als de relatie tussen verschillende grootheden. Symbolen helpen om een ​​onderwerp beter en efficiënter te begrijpen. Het scala aan symbolen in de wiskunde is enorm, variërend van een simpele optelling ‘+’ tot complexe differentiatie’ dy/dx’ degenen. Symbolen worden ook gebruikt als korte vorm voor verschillende veelgebruikte zinnen of woorden, zoals ∵ is gebruikt voor omdat of sinds.

Basissymbolen van wiskunde

Hier zijn enkele elementaire wiskundige symbolen:

  • Plusteken (+): Betekent optelling
  • Minteken (-): Betekent aftrekken
  • Is gelijk aan symbool (=)
  • Is niet gelijk aan symbool (≠)
  • Vermenigvuldigingsteken (×)
  • Divisiesymbool (÷)
  • Groter dan/kleiner dan symbolen
  • Groter dan of gelijk aan/kleiner dan of gelijk aan symbolen (≥ ≤)

Andere wiskundige symbolen zijn onder meer:



  • Sterretje (*) of tijdteken (×)
  • Vermenigvuldigingspunt (⋅)
  • Divisie schuine streep (/)
  • Ongelijkheid (≥, ≤)
  • Haakjes ( )
  • Beugels ()

Lijst met alle wiskundesymbolen

Symbolen maken onze berekeningen eenvoudiger en sneller. Het ‘+’ symbool geeft bijvoorbeeld aan dat we iets toevoegen. Er zijn meer dan 10.000 symbolen in de wiskunde; hiervan worden slechts enkele symbolen zelden gebruikt en weinigen worden zeer vaak gebruikt. De algemene en elementaire wiskundesymbolen, samen met hun beschrijving en betekenis, worden beschreven in de onderstaande tabel:

Symbool

Naam

BeschrijvingBetekenisVoorbeeld
+

Toevoeging

plusa + b is de som van a en b2 + 7 = 9

Aftrekken

minusa – b is het verschil tussen a en b14 – 6 = 8

×


Vermenigvuldiging


keer

a × b is de vermenigvuldiging van a en b.

2 × 5 = 10

.

A . b is de vermenigvuldiging van a en b.

7 2 = 14

*

Asterisk

a * b is de vermenigvuldiging van a en b.

4*5 = 20

÷


Divisie


gedeeld door
a ÷ b is de deling van a door b5 ÷ 5 = 1
/ a/b is de deling van a door b16⁄8 = 2
=

Gelijkwaardigheid

is gelijk aanAls een = b, a en b vertegenwoordigen hetzelfde getal.2 + 6 = 8
<


Vergelijking

is minder danAls een 17 <45
> is groter danAls a> b, is a groter dan b19> 6

min – plus

min of plusa ± b betekent zowel a + b als a – b5 ∓ 9 = -4 en 14
±

plus minus

plus of mina ± b betekent zowel a – b als a + b5 ± 9 = 14 en -4
.

decimale punt

periodegebruikt om een ​​decimaal getal weer te geven12.05 = 12 +(5/100)
tegen

module

mod vangebruikt voor de restberekening16 tegen 5 = 1
A B

exponent


stroom
gebruikt om het product van een getal ‘a’, b keer te berekenen.73= 343
√een

vierkantswortel

√a · √a = een√a is een niet-negatief getal waarvan het kwadraat ‘a’ is√16 = ±4
3 √een

kubus wortel

hoe je char naar string converteert
3√een ·3√een ·3√a = een3√a is een getal waarvan de kubus ‘a’ is

3√81 = 3

4 √een

vierde wortel

4√een ·4√een ·4√een ·4√a = een4√a is een niet-negatief getal waarvan de vierde macht ‘a’ is4√625 = ±5
N √een

n-de wortel (radicaal)

N√een ·N√a · · · n keer = a N√a is een getal waarvan nemacht is ‘een’voor n = 5,N√32 = 2
%

procent

1% = 1/100gebruikt om het percentage van een bepaald getal te berekenen25% × 60
= 25/100 × 60
= 15

per duizend

1‰ = 1/1000 = 0,1%gebruikt om een ​​tiende van een percentage van een bepaald getal te berekenen10 ‰ × 50
= 10/1000 × vijftig
= 0,5
ppm per miljoen1 ppm = 1/1000000gebruikt om een ​​miljoenste van een bepaald getal te berekenen10 ppm × 50
= 10/1000000 × vijftig
= 0,0005
ppb

per – miljard

1 ppb = 10-9gebruikt om een ​​miljardste van een bepaald getal te berekenen10 ppb × 50
= 10 × 10-9×50
= 5×10-7
ppt

per – biljoen

1 ppt = 10-12gebruikt om een ​​biljoenste van een bepaald getal te berekenen10 ppt × 50
= 10 × 10-12×50
= 5×10-10

Algebra-symbolen in wiskunde

Algebra is die tak van de wiskunde die ons helpt de waarde van het onbekende te vinden. De onbekende waarde wordt weergegeven door variabelen . Er worden verschillende bewerkingen uitgevoerd om de waarde van deze onbekende variabele te vinden. Algebraïsche symbolen worden gebruikt om de bewerkingen weer te geven die nodig zijn voor de berekening. Symbolen die in de algebra worden gebruikt, worden hieronder geïllustreerd:

Symbool

Naam

BeschrijvingBetekenisVoorbeeld

x,y

Variabelen

onbekende waarde

x = 2, vertegenwoordigt de waarde van x is 2.

3x = 9 ⇒ x = 3

1, 2, 3….

Cijferconstanten

cijfers

In x + 2 is 2 de numerieke constante.

x + 5 = 10, hier zijn 5 en 10 constant

Ongelijkheid

is niet gelijk aanAls een b, a en b vertegenwoordigen niet hetzelfde getal.3 ≠ 5
Ongeveer gelijkis ongeveer gelijk aanAls a ≈ b, zijn a en b vrijwel gelijk.√2≈1,41



Definitie

is gedefinieerd als
'of'
is per definitie gelijk
Als a ≡ b, wordt a gedefinieerd als een andere naam van b(a+b)2≡ een2+ 2ab + b2
:=Als a := b, wordt a gedefinieerd door b

(a-b)2:= een2-2ab + b2

Als een b, a is de definitie van b.

A2-B2 (a-b).(a+b)

<



Strenge ongelijkheid

is minder danAls een 17 <45
> is groter danAls a> b, is a groter dan b19> 6

<<

is veel minder danAls een

1 <<999999999

>>

is veel groter danAls a> b, is a veel groter dan b

999999999>> 1


Ongelijkheid

kleiner is dan of gelijk is aanAls a ≤ b, is a kleiner dan of gelijk aan b3 ≤ 5 en 3 ≤ 3
is groter dan of gelijk aanAls a ≥ b, is a groter dan of gelijk aan b4 ≥ 1 en 4 ≥ 4
[ ]



Beugels

Vierkante haakjesbereken eerst de expressie binnen [ ], deze heeft de minste prioriteit van alle haakjes[1 + 2] – [2 +4] + 4 × 5
= 3 – 6 + 4×5
= 3 – 6 + 20
= 23 – 6 = 17
( ) haakjes (ronde haakjes)bereken eerst de uitdrukking binnen ( ), deze heeft de hoogste prioriteit van alle haakjes(15 / 5) × 2 + (2 + 8)
= 3×2+10
= 6 + 10
= 16

Proportieevenredig aan

Als a ∝ b , wordt dit gebruikt om de relatie/proportie tussen a en b weer te geven

x ∝ y⟹ x = ky, waarbij k constant is.

f(x)Functie

f(x) = x, wordt gebruikt om waarden van x toe te wijzen aan f(x)


f(x) = 2x + 5

!FactorieelfaculteitN! is het product 1×2×3…×n6! = 1 × 2 × 3 × 4 × 5 × 6 = 720

Materiële implicatie

impliceert

A ⇒ B betekent dat als A waar is, B ook waar moet zijn, maar als A onwaar is, is B onbekend.

x = 2 ⇒x2= 4, maar x2= 4 ⇒ x = 2 is onwaar, omdat x ook -2 kan zijn.

Materiële gelijkwaardigheid

volledig optelcircuit

als en alleen als

Als A waar is, is B waar en als A onwaar is, is B ook onwaar.

x = y + 4 ⇔ x-4 = y

|….|

Absolute waarde

absolute waarde van

|een| retourneert altijd de absolute of positieve waarde

|5| = 5 en |-5| = 5

Meetkundesymbolen in wiskunde

In de meetkunde worden verschillende symbolen gebruikt als afkorting van een veelgebruikt woord. ‘⊥’ wordt bijvoorbeeld gebruikt om te bepalen dat de lijnen loodrecht op elkaar staan. Symbolen die in de geometrie worden gebruikt, worden hieronder geïllustreerd:

Symbool

Naam

BetekenisVoorbeeld

Hoek

Het wordt gebruikt om een ​​hoek te noemen die wordt gevormd door twee stralen

∠PQR = 30°

Juiste hoek

Het bepaalt dat de gevormde hoek een rechte hoek is, d.w.z. 90°

∟XYZ = 90°

.

Punt

Het beschrijft een locatie in de ruimte.

(a,b,c) het wordt weergegeven als een coördinaat in de ruimte door een punt.

straal

Het laat zien dat de lijn een vast beginpunt heeft, maar geen eindpunt.

overrightarrow{ m AB} is een straal.

_

Lijnstuk

Het laat zien dat de lijn een vast beginpunt en een vast eindpunt heeft.

overline{ m AB} is een lijnstuk.

Lijn

Het laat zien dat de lijn geen beginpunt of eindpunt heeft.

overleftrightarrow{ m AB} is een lijn.

frown

Boog

Het bepaalt de graad van een boog van punt A naar punt B.

adjunct-commissaris van politie

frownover{ m AB} = 45°

Parallel

Het laat zien dat lijnen evenwijdig aan elkaar zijn.

AB ∥ CD

Niet parallel

Het laat zien dat de lijnen niet evenwijdig zijn.

AB ∦CD

Loodrecht

Het laat zien dat twee lijnen loodrecht staan, dat wil zeggen dat ze elkaar onder een hoek van 90° snijden

AB⟂CD

otperp

Niet loodrecht

Het laat zien dat lijnen niet loodrecht op elkaar staan.

AB otperp CD

Congruent

Het toont congruentie tussen twee vormen, dat wil zeggen dat twee vormen gelijkwaardig zijn qua vorm en grootte.

△ABC ≅ △XYZ

~

Gelijkenis

Het laat zien dat twee vormen op elkaar lijken, dat wil zeggen dat twee vormen qua vorm vergelijkbaar zijn, maar niet qua grootte.

△ABC ~ △XYZ

Driehoek

Het wordt gebruikt om een ​​driehoekige vorm te bepalen.

△ABC, vertegenwoordigt ABC en is een driehoek.

°

Rang

Het is een eenheid die wordt gebruikt om de maat van een hoek te bepalen.

a = 30°

rad ofC

Radialen

360° = 2 stC

graad ofG

Gradiënten

360° = 400G

|x-y|

Afstand

Het wordt gebruikt om de afstand tussen twee punten te bepalen.

| x-y | = 5

sites zoals coomeet

Pi

pi-constante

Het is een vooraf gedefinieerde constante met waarde 22/7 of 3,1415926…

2π= 2 × 22/7 = 44/7

Stel het theoriesymbool in wiskunde in

Enkele van de meest voorkomende symbolen in de verzamelingenleer staan ​​vermeld in de volgende tabel:

Symbool

Naam

BetekenisVoorbeeld
{ }SetHet wordt gebruikt om de elementen in een set te bepalen.{1, 2, een, b}
|
Zoals dat
Het wordt gebruikt om de staat van de set te bepalen.

A

:

{ x: x> 0}

hoort bijHet bepaalt dat een element tot een set behoort.EEN = {1, 5, 7, c, een}
7 ∈ EEN
behoort niet totHet geeft aan dat een element niet tot een set behoort.EEN = {1, 5, 7, c, een}
0 ∉ EEN
=Gelijkheidsrelatie

Het bepaalt dat twee sets exact hetzelfde zijn.

EEN = {1, 2, 3}
B = {1, 2, 3} dan
EEN = B
Subgroep Het vertegenwoordigt dat alle elementen van set A aanwezig zijn in set B of dat set A gelijk is aan set B

EEN = {1, 3, een}

B = {een, b, 1, 2, 3, 4, 5}

EEN ⊆ B

Juiste subsetHet vertegenwoordigt dat alle elementen van set A aanwezig zijn in set B en set A niet gelijk is aan set B.

EEN = {1, 2, een}

B = {een, b, c, 2, 4, 5, 1}

EEN ⊂ B

Geen subsetHet bepaalt dat A geen deelverzameling is van verzameling B.

EEN = {1, 2, 3}

B = {een, b, c}

EEN ⊄ B

Superset Het vertegenwoordigt dat alle elementen van set B aanwezig zijn in set A of dat set A gelijk is aan set B

EEN = {1, 2, a, b, c}

B = {1, een}

EEN ⊇ B

Juiste SupersetHet bepaalt dat A een superset van B is, maar set A is niet gelijk aan set BEEN = {1, 2, 3, een, b}
B = {1, 2, een}
EEN ⊃ B
O Lege set Het bepaalt dat er geen element in een set zit.{ } = Ø
IN Universele set Het is een set die elementen bevat van alle andere relevante sets.EEN = {een, b, c}
B = {1, 2, 3}, dus
U = {1, 2, 3, a, b, c}
|EEN| of n{A}Kardinaliteit van een verzamelingHet vertegenwoordigt het aantal items in een set.A= {1, 3, 4, 5, 2}, dan |A|=5.
P(X)Vermogen ingesteldHet is de set die alle mogelijke subsets van een set A bevat, inclusief de set zelf en de nulset.

Als A = {a, b}

P(A) = {{ }, {a}, {b}, {a, b}}

Unie van sets Het is een set die alle elementen van de meegeleverde sets bevat.

EEN = {een, b, c}

B = {p,q}

EEN ∪ B = {a, b, c, p, q}

Snijpunt van setsHet toont de gemeenschappelijke elementen van beide sets.

EEN = { een, b}

B= {1, 2, een}

EEN ∩ B = {a}

XCOFX'Aanvulling op een setEen aanvulling op een set omvat alle andere elementen die niet tot die set behoren.

EEN = {1, 2, 3, 4, 5}

B = {1, 2, 3} dan

X′ = A – B

X′ = {4, 5}

Verschil instellen Het toont het verschil van elementen tussen twee sets.

EEN = {1, 2, 3, 4, a, b, c}

B = {1, 2, een, b}

A – B = {3, 4, c}

× Cartesisch product van sets Het is het product van de bestelde onderdelen van de sets.

A = {1, 2} en B = {a}

EEN × B ={(1, een), (2, een)}

Calculus- en analysesymbolen in wiskunde

Calculus is een tak van de wiskunde die zich bezighoudt met de snelheid waarmee de functie verandert en de som van oneindig kleine waarden, waarbij gebruik wordt gemaakt van het concept van limieten. Er worden verschillende symbolen gebruikt in berekeningen, leer alle gebruikte symbolen Berekening via de onderstaande tabel,

SymboolSymboolnaam in wiskundeWiskundige symbolen BetekenisVoorbeeld
e epsilonvertegenwoordigt een zeer klein aantal, bijna nulε → 0
Het is e Constant/Eulers getale = 2,718281828…e = lim(1+1/x)x , x→∞
lim x → een begrenzinggrenswaarde van een functielimx → 2(2x + 2) = 2x2 + 2 = 6
En' derivaatafgeleide - de notatie van Lagrange(4x2)’ = 8x
En Tweede afgeleideafgeleide van afgeleide(4x2) = 8
En (N) nde afgeleiden maal afleidingnde afgeleide van xNXN{EnN(XN)} = n (n-1)(n-2)….(2)(1) = n!
dy/dx derivaatafgeleide – de notatie van Leibnizd(6x4)/dx = 24x3
dy/dx derivaatafgeleide – de notatie van Leibniz

D2(6x4)/dx2= 72x2

D N j/dx N nde afgeleiden maal afleidingnde afgeleide van xNXN{DN(XN)/dxN} = n (n-1)(n-2)….(2)(1) = n!
DxEnkele afgeleide van tijdAfgeleide-Euler-notatied(6x4)/dx = 24x3
D 2 X tweede afgeleideTweede afgeleide-Euler-notatied(6×4)/dx = 24×3
D N X derivaatn-de afgeleide-Euler's notatiende afgeleide van xN{DN(XN)} = n (n-1)(n-2)….(2)(1) = n!

∂/∂x

gedeeltelijke afgeleideDifferentiëren van een functie met betrekking tot één variabele, waarbij de andere variabelen als constant worden beschouwd∂(x5+ yz)/∂x = 5x4
uitgebreidtegengesteld aan afleiding∫xNdx = xn+1/n + 1 + C
dubbele integraalintegratie van de functie van 2 variabelen∬(x + y) dx.dy
drievoudige integraalintegratie van de functie van 3 variabelen∫∫∫(x + y + z) dx.dy.dz
gesloten contour/lijnintegraalLijnintegraal over gesloten curveC2p dp
gesloten oppervlakte-integraalDubbele integraal over een gesloten oppervlakIN(⛛.F)dV = ∯S(F.n̂) dS
gesloten volume-integraalVolume-integraal over een gesloten driedimensionaal domein∰ (x2+ en2+ z2) dx dy dz
[a,b] gesloten interval[a,b] = xcos x ∈ [ – 1, 1]
(a,b) open interval(a,b) = xf is continu binnen (-1, 1)
Met* complex conjugaatz = a+bi → z*=a-biAls z = a + bi, dan is z* = a – bi
i denkbeeldige eenheidik ≡ √-1z = a + bi
nabla/delgradiënt/divergentie-operator∇f (x,y,z)
x * j convolutieWijziging in een functie vanwege de andere functie.y(t) = x(t) * h(t)
lemniscateoneindigheidssymboolx ≥ 0; x ∈ (0, ∞)

Combinatorische symbolen in wiskunde

Combinatorische symbolen die in de wiskunde worden gebruikt om de combinatie van eindige discrete structuren te bestuderen. Verschillende belangrijke combinatorische symbolen die in de wiskunde worden gebruikt, zijn als volgt aan de tabel toegevoegd:

Symbool

Symboolnaam

Betekenis of definitie

Voorbeeld

N!FactorieelN! = 1×2×3×…×n4! = 1×2×3×4 = 24
NPk Permutatie NPk= n!/(n – k)!4P2= 4!/(4 – 2)! = 12
NCk Combinatie NCk= n!/(n – k)!.k!4C2= 4!/2!(4 – 2)! = 6

Cijfersymbolen in wiskunde

Er zijn verschillende soorten getallen die in de wiskunde worden gebruikt door wiskundigen uit verschillende regio's en enkele van de meest prominente getalsymbolen zoals Europese getallen en Romeinse cijfers bij wiskunde zijn,

NaamEuropeseRomeins
nul 0n.v.t
een 1I
twee 2II
drie 3III
vier 4IV
vijf 5IN
zes 6WIJ
zeven 7VII
acht 8VIII
negen 9IX
tien 10X
elf elfXI
twaalf 12XII
dertien 13XIII
veertien 14XIV
vijftien vijftienXV
zestien 16XVI
zeventien 17XVII
achttien 18XVIII
negentien 19XIX
twintig twintigXX
dertig 30XXX
veertig 40XL
vijftig vijftigL
zestig 60LX
zeventig 70LXX
tachtig 8080
negentig 90XC
honderd 100C

Griekse symbolen in wiskunde

Lijst van compleet Griekse alfabetten vindt u in de volgende tabel:

Grieks symbool

Griekse letternaam

reageer inline-stijl

Engels gelijkwaardig

Kleine letters

Hoofdletters

AAAlfaA
BBBètaB
DDDeltaD
CCGammaG
GGZetaMet
EeEpsilonHet is
EiThetae
DEdeEnH
KKKappak
IiJotai
MMInM
LlLambdal
XXXiX
NNNietN
DEDeOmicronO
PiPiPiP
SPSigmaS
RRRhoR
YuUpsilonin
TTJaT
XHUitgevench
PhiPhiPhiph
PsPPsips
OhOhOmegaO

Logische symbolen in wiskunde

Enkele veel voorkomende logische symbolen worden in de volgende tabel vermeld:

SymboolNaamBetekenisVoorbeeld
¬Ontkenning (NIET)Het is niet zo dat¬P (niet P)
Conjunctie (EN)Beide zijn waarP ∧ Q (P en Q)
Disjunctie (OR)Er is er tenminste één waarP ∨ Q (P of Q)
Implicatie (ALS…DAN)Als het eerste waar is, dan is het tweede waarP → Q (Als P dan Q)
Bi-implicatie (ALS EN ALLEEN ALS)Beide zijn waar of beide zijn onwaarP ↔ Q (P dan en slechts dan als Q)
Universele kwantificator (voor iedereen)Alles in de opgegeven set∀x P(x) (Voor alle x, P(x))
Existentiële kwantificator (er bestaat)Er is er minstens één in de opgegeven set∃x P(x) (Er bestaat een x zodat P(x))

Discrete wiskundesymbolen

Sommige symbolen die verband houden met discrete wiskunde zijn:

SymboolNaamBetekenisVoorbeeld
Verzameling van natuurlijke getallenPositieve gehele getallen (inclusief nul)0, 1, 2, 3, …
Set gehele getallenHele getallen (positief, negatief en nul)-3, -2, -1, 0, 1, 2, 3, …
Verzameling van rationale getallenGetallen die kunnen worden uitgedrukt als een breuk1/2, 3/4, 5, -2, 0,75, …
Set van reële getallenAlle rationale en irrationele getallenπ, e, √2, 3/2, …
Verzameling van complexe getallenGetallen met reële en denkbeeldige delen3 + 4i, -2 – 5i, …
N!Faculteit van nProduct van alle positieve gehele getallen tot n5! = 5 × 4 × 3 × 2 × 1
NCkof C(n, k)Binominale coëfficiëntAantal manieren om k elementen uit n items te kiezen5C3 = 10
G, H, …Namen voor grafiekenVariabelen die grafieken vertegenwoordigenGrafiek G, Grafiek H, …
V(G)Set hoekpunten van grafiek GAlle hoekpunten (knooppunten) in grafiek GAls G een driehoek is, V(G) = {A, B, C}
E(G)Set randen van grafiek GAlle randen in grafiek GAls G een driehoek is, E(G) = {AB, BC, CA}
|V(G)|Aantal hoekpunten in grafiek GTotaal aantal hoekpunten in grafiek GAls G een driehoek is, |V(G)| = 3
|E(G)|Aantal randen in grafiek GTotaal aantal randen in grafiek GAls G een driehoek is, geldt |E(G)| = 3
SommatieSom over een bereik van waarden∑_{i=1}^{n} ik = 1 + 2 + … + n
ProductnotatieProduct over een bereik van waarden∏_{i=1}^{n} ik = 1 × 2 × … × n

Veelgestelde vragen over wiskundige symbolen

Wat zijn elementaire rekenkundige symbolen?

Basis rekenkundige symbolen zijn optellen (+), aftrekken (-), vermenigvuldigen (× of ·) en delen (÷ of /).

Wat is de betekenis van Gelijkteken?

Gelijkteken betekent dat twee uitdrukkingen aan elke kant gelijkwaardig zijn in waarde.

Wat vertegenwoordigt Pi in wiskunde?

Pi vertegenwoordigt de verhouding van de omtrek van een cirkel tot zijn diameter, ongeveer 3,14159.

Wat is het symbool voor optelling?

Het symbool voor optellen in wiskunde is + en wordt gebruikt om twee numerieke waarden op te tellen.

Wat is e-symbool in de wiskunde?

Symbool e in de wiskunde vertegenwoordigt het getal van Euler, dat ongeveer gelijk is aan 2,71828.

Welk symbool vertegenwoordigt oneindigheid?

Oneindigheid wordt weergegeven door ∞, het wordt weergegeven door een horizontale acht, ook wel een luie acht genoemd.