logo

Paren complete snaren in twee sets snaren

Er wordt gezegd dat twee strings compleet zijn als ze bij aaneenschakeling alle 26 Engelse alfabetten bevatten. 'abcdefghi' en 'jklmnopqrstuvwxyz' zijn bijvoorbeeld compleet omdat ze samen alle tekens van 'a' tot 'z' hebben. 

javascript laden



Input : set1[] = {'abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'} set2[] = {'ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'} Output : 7 The total complete pairs that are forming are: 'abcdefghijklmnopqrstuvwxyz' 'abcdefghabcdefghijklmnopqrstuvwxyz' 'abcdefghdefghijklmnopqrstuvwxyz' 'geeksforgeeksabcdefghijklmnopqrstuvwxyz' 'lmnopqrstabcdefghijklmnopqrstuvwxyz' 'abcabcdefghijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz'

Methode 1 (Naïeve methode): Een eenvoudige oplossing is om alle paren strings aan elkaar te koppelen en vervolgens te controleren of de aaneengeschakelde string alle tekens van 'a' tot 'z' bevat met behulp van een frequentiearray.  

Uitvoering:

C++
// C++ implementation for find pairs of complete // strings. #include    using namespace std; // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] int countCompletePairs(string set1[] string set2[]  int n int m) {  int result = 0;  // Consider all pairs of both strings  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // Create a concatenation of current pair  string concat = set1[i] + set2[j];  // Compute frequencies of all characters  // in the concatenated string.  int frequency[26] = { 0 };  for (int k = 0; k < concat.length(); k++)  frequency[concat[k] - 'a']++;  // If frequency of any character is not  // greater than 0 then this pair is not  // complete.  int i;  for (i = 0; i < 26; i++)  if (frequency[i] < 1)  break;  if (i == 26)  result++;  }  }  return result; } // Driver code int main() {  string set1[] = { 'abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc' };  string set2[] = { 'ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' };  int n = sizeof(set1) / sizeof(set1[0]);  int m = sizeof(set2) / sizeof(set2[0]);  cout << countCompletePairs(set1 set2 n m);  return 0; } 
Java
// Java implementation for find pairs of complete // strings. class GFG {  // Returns count of complete pairs from set[0..n-1]  // and set2[0..m-1]  static int countCompletePairs(String set1[] String set2[]  int n int m)  {  int result = 0;  // Consider all pairs of both strings  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // Create a concatenation of current pair  String concat = set1[i] + set2[j];  // Compute frequencies of all characters  // in the concatenated String.  int frequency[] = new int[26];  for (int k = 0; k < concat.length(); k++) {  frequency[concat.charAt(k) - 'a']++;  }  // If frequency of any character is not  // greater than 0 then this pair is not  // complete.  int k;  for (k = 0; k < 26; k++) {  if (frequency[k] < 1) {  break;  }  }  if (k == 26) {  result++;  }  }  }  return result;  }  // Driver code  static public void main(String[] args)  {  String set1[] = { 'abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc' };  String set2[] = { 'ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' };  int n = set1.length;  int m = set2.length;  System.out.println(countCompletePairs(set1 set2 n m));  } } // This code is contributed by PrinciRaj19992 
Python3
# Python3 implementation for find pairs of complete # strings.  # Returns count of complete pairs from set[0..n-1] # and set2[0..m-1] def countCompletePairs(set1set2nm): result = 0 # Consider all pairs of both strings for i in range(n): for j in range(m): # Create a concatenation of current pair concat = set1[i] + set2[j] # Compute frequencies of all characters # in the concatenated String. frequency = [0 for i in range(26)] for k in range(len(concat)): frequency[ord(concat[k]) - ord('a')] += 1 # If frequency of any character is not # greater than 0 then this pair is not # complete. k = 0 while(k<26): if (frequency[k] < 1): break k += 1 if (k == 26): result += 1 return result # Driver code  set1=['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'] set2=['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] n = len(set1) m = len(set2) print(countCompletePairs(set1 set2 n m)) # This code is contributed by shinjanpatra 
C#
// C# implementation for find pairs of complete // strings. using System; class GFG {  // Returns count of complete pairs from set[0..n-1]  // and set2[0..m-1]  static int countCompletePairs(string[] set1 string[] set2  int n int m)  {  int result = 0;  // Consider all pairs of both strings  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // Create a concatenation of current pair  string concat = set1[i] + set2[j];  // Compute frequencies of all characters  // in the concatenated String.  int[] frequency = new int[26];  for (int k = 0; k < concat.Length; k++) {  frequency[concat[k] - 'a']++;  }  // If frequency of any character is not  // greater than 0 then this pair is not  // complete.  int l;  for (l = 0; l < 26; l++) {  if (frequency[l] < 1) {  break;  }  }  if (l == 26) {  result++;  }  }  }  return result;  }  // Driver code  static public void Main()  {  string[] set1 = { 'abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc' };  string[] set2 = { 'ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' };  int n = set1.Length;  int m = set2.Length;  Console.Write(countCompletePairs(set1 set2 n m));  } } // This article is contributed by Ita_c. 
JavaScript
<script> // Javascript implementation for find pairs of complete // strings.   // Returns count of complete pairs from set[0..n-1]  // and set2[0..m-1]  function countCompletePairs(set1set2nm)  {  let result = 0;    // Consider all pairs of both strings  for (let i = 0; i < n; i++) {  for (let j = 0; j < m; j++) {  // Create a concatenation of current pair  let concat = set1[i] + set2[j];    // Compute frequencies of all characters  // in the concatenated String.  let frequency = new Array(26);  for(let i= 0;i<26;i++)  {  frequency[i]=0;  }    for (let k = 0; k < concat.length; k++) {  frequency[concat[k].charCodeAt(0) - 'a'.charCodeAt(0)]++;  }    // If frequency of any character is not  // greater than 0 then this pair is not  // complete.  let k;  for (k = 0; k < 26; k++) {  if (frequency[k] < 1) {  break;  }  }  if (k == 26) {  result++;  }  }  }    return result;  }    // Driver code   let set1=['abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc'];  let set2=['ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz']  let n = set1.length;  let m=set2.length;  document.write(countCompletePairs(set1 set2 n m));    // This code is contributed by avanitrachhadiya2155   </script> 

Uitvoer
7

Tijdcomplexiteit: O(n * m * k)
Hulpruimte: O(1)



Methode 2 (geoptimaliseerde methode met behulp van bitmanipulatie): Bij deze methode comprimeren we de frequentiearray tot een geheel getal. We wijzen aan elk bit van dat gehele getal een teken toe en stellen dit in op 1 wanneer het teken wordt gevonden. We voeren dit uit voor alle snaren in beide sets. Ten slotte vergelijken we gewoon de twee gehele getallen in de sets en als bij het combineren alle bits zijn ingesteld, vormen ze een compleet stringpaar.

uitpakken in Linux

Uitvoering:

C++14
// C++ program to find count of complete pairs #include    using namespace std; // Returns count of complete pairs from set[0..n-1] // and set2[0..m-1] int countCompletePairs(string set1[] string set2[]  int n int m) {  int result = 0;  // con_s1[i] is going to store an integer whose  // set bits represent presence/absence of characters  // in string set1[i].  // Similarly con_s2[i] is going to store an integer  // whose set bits represent presence/absence of  // characters in string set2[i]  int con_s1[n] con_s2[m];  // Process all strings in set1[]  for (int i = 0; i < n; i++) {  // initializing all bits to 0  con_s1[i] = 0;  for (int j = 0; j < set1[i].length(); j++) {  // Setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s1[i] = con_s1[i] | (1 << (set1[i][j] - 'a'));  }  }  // Process all strings in set2[]  for (int i = 0; i < m; i++) {  // initializing all bits to 0  con_s2[i] = 0;  for (int j = 0; j < set2[i].length(); j++) {  // setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s2[i] = con_s2[i] | (1 << (set2[i][j] - 'a'));  }  }  // assigning a variable whose all 26 (0..25)  // bits are set to 1  long long complete = (1 << 26) - 1;  // Now consider every pair of integer in con_s1[]  // and con_s2[] and check if the pair is complete.  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // if all bits are set the strings are  // complete!  if ((con_s1[i] | con_s2[j]) == complete)  result++;  }  }  return result; } // Driver code int main() {  string set1[] = { 'abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc' };  string set2[] = { 'ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' };  int n = sizeof(set1) / sizeof(set1[0]);  int m = sizeof(set2) / sizeof(set2[0]);  cout << countCompletePairs(set1 set2 n m);  return 0; } 
Java
// Java program to find count of complete pairs class GFG {  // Returns count of complete pairs from set[0..n-1]  // and set2[0..m-1]  static int countCompletePairs(String set1[] String set2[]  int n int m)  {  int result = 0;  // con_s1[i] is going to store an integer whose  // set bits represent presence/absence of characters  // in string set1[i].  // Similarly con_s2[i] is going to store an integer  // whose set bits represent presence/absence of  // characters in string set2[i]  int[] con_s1 = new int[n];  int[] con_s2 = new int[m];  // Process all strings in set1[]  for (int i = 0; i < n; i++) {  // initializing all bits to 0  con_s1[i] = 0;  for (int j = 0; j < set1[i].length(); j++) {  // Setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s1[i] = con_s1[i] | (1 << (set1[i].charAt(j) - 'a'));  }  }  // Process all strings in set2[]  for (int i = 0; i < m; i++) {  // initializing all bits to 0  con_s2[i] = 0;  for (int j = 0; j < set2[i].length(); j++) {  // setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s2[i] = con_s2[i] | (1 << (set2[i].charAt(j) - 'a'));  }  }  // assigning a variable whose all 26 (0..25)  // bits are set to 1  long complete = (1 << 26) - 1;  // Now consider every pair of integer in con_s1[]  // and con_s2[] and check if the pair is complete.  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // if all bits are set the strings are  // complete!  if ((con_s1[i] | con_s2[j]) == complete) {  result++;  }  }  }  return result;  }  // Driver code  public static void main(String args[])  {  String set1[] = { 'abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc' };  String set2[] = { 'ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' };  int n = set1.length;  int m = set2.length;  System.out.println(countCompletePairs(set1 set2 n m));  } } // This code contributed by Rajput-Ji 
C#
// C# program to find count of complete pairs using System; class GFG {  // Returns count of complete pairs from set[0..n-1]  // and set2[0..m-1]  static int countCompletePairs(String[] set1 String[] set2  int n int m)  {  int result = 0;  // con_s1[i] is going to store an integer whose  // set bits represent presence/absence of characters  // in string set1[i].  // Similarly con_s2[i] is going to store an integer  // whose set bits represent presence/absence of  // characters in string set2[i]  int[] con_s1 = new int[n];  int[] con_s2 = new int[m];  // Process all strings in set1[]  for (int i = 0; i < n; i++) {  // initializing all bits to 0  con_s1[i] = 0;  for (int j = 0; j < set1[i].Length; j++) {  // Setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s1[i] = con_s1[i] | (1 << (set1[i][j] - 'a'));  }  }  // Process all strings in set2[]  for (int i = 0; i < m; i++) {  // initializing all bits to 0  con_s2[i] = 0;  for (int j = 0; j < set2[i].Length; j++) {  // setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s2[i] = con_s2[i] | (1 << (set2[i][j] - 'a'));  }  }  // assigning a variable whose all 26 (0..25)  // bits are set to 1  long complete = (1 << 26) - 1;  // Now consider every pair of integer in con_s1[]  // and con_s2[] and check if the pair is complete.  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // if all bits are set the strings are  // complete!  if ((con_s1[i] | con_s2[j]) == complete) {  result++;  }  }  }  return result;  }  // Driver code  public static void Main(String[] args)  {  String[] set1 = { 'abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc' };  String[] set2 = { 'ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' };  int n = set1.Length;  int m = set2.Length;  Console.WriteLine(countCompletePairs(set1 set2 n m));  } } // This code has been contributed by 29AjayKumar 
Python3
# Python3 program to find count of complete pairs # Returns count of complete pairs from set[0..n-1] # and set2[0..m-1] def countCompletePairs(set1 set2 n m): result = 0 # con_s1[i] is going to store an integer whose # set bits represent presence/absence of characters # in set1[i]. # Similarly con_s2[i] is going to store an integer # whose set bits represent presence/absence of # characters in set2[i] con_s1 con_s2 = [0] * n [0] * m # Process all strings in set1[] for i in range(n): # initializing all bits to 0 con_s1[i] = 0 for j in range(len(set1[i])): # Setting the ascii code of char s[i][j] # to 1 in the compressed integer. con_s1[i] = con_s1[i] | (1 << (ord(set1[i][j]) - ord('a'))) # Process all strings in set2[] for i in range(m): # initializing all bits to 0 con_s2[i] = 0 for j in range(len(set2[i])): # setting the ascii code of char s[i][j] # to 1 in the compressed integer. con_s2[i] = con_s2[i] | (1 << (ord(set2[i][j]) - ord('a'))) # assigning a variable whose all 26 (0..25) # bits are set to 1 complete = (1 << 26) - 1 # Now consider every pair of integer in con_s1[] # and con_s2[] and check if the pair is complete. for i in range(n): for j in range(m): # if all bits are set the strings are # complete! if ((con_s1[i] | con_s2[j]) == complete): result += 1 return result # Driver code if __name__ == '__main__': set1 = ['abcdefgh' 'geeksforgeeks' 'lmnopqrst' 'abc'] set2 = ['ijklmnopqrstuvwxyz' 'abcdefghijklmnopqrstuvwxyz' 'defghijklmnopqrstuvwxyz'] n = len(set1) m = len(set2) print(countCompletePairs(set1 set2 n m)) # This code is contributed by mohit kumar 29 
JavaScript
<script> // Javascript program to find count of complete pairs    // Returns count of complete pairs from set[0..n-1]  // and set2[0..m-1]  function countCompletePairs(set1set2nm)  {  let result = 0;    // con_s1[i] is going to store an integer whose  // set bits represent presence/absence of characters  // in string set1[i].  // Similarly con_s2[i] is going to store an integer  // whose set bits represent presence/absence of  // characters in string set2[i]  let con_s1 = new Array(n);  let con_s2 = new Array(m);    // Process all strings in set1[]  for (let i = 0; i < n; i++) {    // initializing all bits to 0  con_s1[i] = 0;  for (let j = 0; j < set1[i].length; j++) {    // Setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s1[i] = con_s1[i] |   (1 << (set1[i][j].charCodeAt(0) - 'a'.charCodeAt(0)));  }  }    // Process all strings in set2[]  for (let i = 0; i < m; i++) {    // initializing all bits to 0  con_s2[i] = 0;  for (let j = 0; j < set2[i].length; j++) {    // setting the ascii code of char s[i][j]  // to 1 in the compressed integer.  con_s2[i] = con_s2[i] |   (1 << (set2[i][j].charCodeAt(0) - 'a'.charCodeAt(0)));  }  }    // assigning a variable whose all 26 (0..25)  // bits are set to 1  let complete = (1 << 26) - 1;    // Now consider every pair of integer in con_s1[]  // and con_s2[] and check if the pair is complete.  for (let i = 0; i < n; i++) {  for (let j = 0; j < m; j++) {    // if all bits are set the strings are  // complete!  if ((con_s1[i] | con_s2[j]) == complete) {  result++;  }  }  }    return result;  }    // Driver code  let set1=['abcdefgh' 'geeksforgeeks'  'lmnopqrst' 'abc'];  let set2=['ijklmnopqrstuvwxyz'  'abcdefghijklmnopqrstuvwxyz'  'defghijklmnopqrstuvwxyz' ]  let n = set1.length;  let m = set2.length;  document.write(countCompletePairs(set1 set2 n m));    // This code is contributed by avanitrachhadiya2155   </script> 

Uitvoer
7

Tijdcomplexiteit: O(n*m) waarbij n de grootte van de eerste set is en m de grootte van de tweede set.
Hulpruimte: Op)



Dit artikel is bijgedragen door Rishabh Jain .