Je krijgt een nummer n ( 3<= n < 10^6 ) and you have to find nearest prime less than n?
Voorbeelden:
javascript base64-decodering
Input : n = 10 Output: 7 Input : n = 17 Output: 13 Input : n = 30 Output: 29
A eenvoudige oplossing want dit probleem is het itereren van n-1 naar 2 en voor elk getal controleer of het een prime is . Indien prime, retourneer het dan en verbreek de lus. Deze oplossing ziet er goed uit als er maar één query is. Maar niet efficiënt als er meerdere zoekopdrachten zijn voor verschillende waarden van n.
Hieronder vindt u de implementatie van de bovenstaande aanpak:
C++// C++ program for the above approach #include using namespace std; // Function to return nearest prime number int prime(int n) { // All prime numbers are odd except two if (n & 1) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= sqrt(i); j += 2) { if (i % j == 0) break; } if (j > sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code int main() { int n = 17; cout << prime(n); return 0; }
C // C program for the above approach #include #include // Function to return nearest prime number int prime(int n) { // All prime numbers are odd except two if (n & 1) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= sqrt(i); j += 2) { if (i % j == 0) break; } if (j > sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code int main() { int n = 17; printf('%d' prime(n)); return 0; } // This code is contributed by Sania Kumari Gupta
Java // Java program for the above approach import java.io.*; class GFG { // Function to return nearest prime number static int prime(int n) { // All prime numbers are odd except two if (n % 2 != 0) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= Math.sqrt(i); j += 2) { if (i % j == 0) break; } if (j > Math.sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code public static void main(String[] args) { int n = 17; System.out.print(prime(n)); } } // This code is contributed by subham348.
Python3 # Python program for the above approach # Function to return nearest prime number from math import floor sqrt def prime(n): # All prime numbers are odd except two if (n & 1): n -= 2 else: n -= 1 ij = 03 for i in range(n 2 -2): if(i % 2 == 0): continue while(j <= floor(sqrt(i)) + 1): if (i % j == 0): break j += 2 if (j > floor(sqrt(i))): return i # It will only be executed when n is 3 return 2 # Driver Code n = 17 print(prime(n)) # This code is contributed by shinjanpatra
C# // C# program for the above approach using System; class GFG { // Function to return nearest prime number static int prime(int n) { // All prime numbers are odd except two if (n % 2 != 0) n -= 2; else n--; int i j; for (i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for (j = 3; j <= Math.Sqrt(i); j += 2) { if (i % j == 0) break; } if (j > Math.Sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code public static void Main() { int n = 17; Console.Write(prime(n)); } } // This code is contributed by subham348.
JavaScript <script> // Javascript program for the above approach // Function to return nearest prime number function prime(n) { // All prime numbers are odd except two if (n & 1) n -= 2; else n--; let i j; for(i = n; i >= 2; i -= 2) { if (i % 2 == 0) continue; for(j = 3; j <= Math.sqrt(i); j += 2) { if (i % j == 0) break; } if (j > Math.sqrt(i)) return i; } // It will only be executed when n is 3 return 2; } // Driver Code let n = 17; document.write(prime(n)); // This code is contributed by souravmahato348 </script>
Uitvoer
13
Tijdcomplexiteit: O(n log n + log n) = O(n log n)
Ruimtecomplexiteit: O(1)
Een efficiënte oplossing voor dit probleem is het genereren van alle priemgetallen kleiner dan 10^6 met behulp van Zeef van Sundaram en vervolgens in oplopende volgorde in een array opslaan. Nu aangepast toepassen binaire zoekopdracht om het dichtstbijzijnde priemgetal kleiner dan n te zoeken.
java pgmC++
// C++ program to find the nearest prime to n. #include #define MAX 1000000 using namespace std; // array to store all primes less than 10^6 vector<int> primes; // Utility function of Sieve of Sundaram void Sieve() { int n = MAX; // In general Sieve of Sundaram produces primes // smaller than (2*x + 2) for a number given // number x int nNew = sqrt(n); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j int marked[n/2+500] = {0}; // eliminate indexes which does not produce primes for (int i=1; i<=(nNew-1)/2; i++) for (int j=(i*(i+1))<<1; j<=n/2; j=j+2*i+1) marked[j] = 1; // Since 2 is a prime number primes.push_back(2); // Remaining primes are of the form 2*i + 1 such // that marked[i] is false. for (int i=1; i<=n/2; i++) if (marked[i] == 0) primes.push_back(2*i + 1); } // modified binary search to find nearest prime less than N int binarySearch(int leftint rightint n) { if (left<=right) { int mid = (left + right)/2; // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.size()-1) return primes[mid]; // now if n is itself a prime so it will be present // in primes array and here we have to find nearest // prime less than n so we will return primes[mid-1] if (primes[mid] == n) return primes[mid-1]; // now if primes[mid]n that // mean we reached at nearest prime if (primes[mid] < n && primes[mid+1] > n) return primes[mid]; if (n < primes[mid]) return binarySearch(left mid-1 n); else return binarySearch(mid+1 right n); } return 0; } // Driver program to run the case int main() { Sieve(); int n = 17; cout << binarySearch(0 primes.size()-1 n); return 0; }
Java // Java program to find the nearest prime to n. import java.util.*; class GFG { static int MAX=1000000; // array to store all primes less than 10^6 static ArrayList<Integer> primes = new ArrayList<Integer>(); // Utility function of Sieve of Sundaram static void Sieve() { int n = MAX; // In general Sieve of Sundaram produces primes // smaller than (2*x + 2) for a number given // number x int nNew = (int)Math.sqrt(n); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j int[] marked = new int[n / 2 + 500]; // eliminate indexes which does not produce primes for (int i = 1; i <= (nNew - 1) / 2; i++) for (int j = (i * (i + 1)) << 1; j <= n / 2; j = j + 2 * i + 1) marked[j] = 1; // Since 2 is a prime number primes.add(2); // Remaining primes are of the form 2*i + 1 such // that marked[i] is false. for (int i = 1; i <= n / 2; i++) if (marked[i] == 0) primes.add(2 * i + 1); } // modified binary search to find nearest prime less than N static int binarySearch(int leftint rightint n) { if (left <= right) { int mid = (left + right) / 2; // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.size() - 1) return primes.get(mid); // now if n is itself a prime so it will be present // in primes array and here we have to find nearest // prime less than n so we will return primes[mid-1] if (primes.get(mid) == n) return primes.get(mid - 1); // now if primes[mid]n that // mean we reached at nearest prime if (primes.get(mid) < n && primes.get(mid + 1) > n) return primes.get(mid); if (n < primes.get(mid)) return binarySearch(left mid - 1 n); else return binarySearch(mid + 1 right n); } return 0; } // Driver code public static void main (String[] args) { Sieve(); int n = 17; System.out.println(binarySearch(0 primes.size() - 1 n)); } } // This code is contributed by mits
Python3 # Python3 program to find the nearest # prime to n. import math MAX = 10000; # array to store all primes less # than 10^6 primes = []; # Utility function of Sieve of Sundaram def Sieve(): n = MAX; # In general Sieve of Sundaram produces # primes smaller than (2*x + 2) for a # number given number x nNew = int(math.sqrt(n)); # This array is used to separate numbers # of the form i+j+2ij from others where # 1 <= i <= j marked = [0] * (int(n / 2 + 500)); # eliminate indexes which does not # produce primes for i in range(1 int((nNew - 1) / 2) + 1): for j in range(((i * (i + 1)) << 1) (int(n / 2) + 1) (2 * i + 1)): marked[j] = 1; # Since 2 is a prime number primes.append(2); # Remaining primes are of the form # 2*i + 1 such that marked[i] is false. for i in range(1 int(n / 2) + 1): if (marked[i] == 0): primes.append(2 * i + 1); # modified binary search to find nearest # prime less than N def binarySearch(left right n): if (left <= right): mid = int((left + right) / 2); # base condition is if we are reaching # at left corner or right corner of # primes[] array then return that corner # element because before or after that # we don't have any prime number in # primes array if (mid == 0 or mid == len(primes) - 1): return primes[mid]; # now if n is itself a prime so it will # be present in primes array and here # we have to find nearest prime less than # n so we will return primes[mid-1] if (primes[mid] == n): return primes[mid - 1]; # now if primes[mid]n # that means we reached at nearest prime if (primes[mid] < n and primes[mid + 1] > n): return primes[mid]; if (n < primes[mid]): return binarySearch(left mid - 1 n); else: return binarySearch(mid + 1 right n); return 0; # Driver Code Sieve(); n = 17; print(binarySearch(0 len(primes) - 1 n)); # This code is contributed by chandan_jnu
C# // C# program to find the nearest prime to n. using System; using System.Collections; class GFG { static int MAX = 1000000; // array to store all primes less than 10^6 static ArrayList primes = new ArrayList(); // Utility function of Sieve of Sundaram static void Sieve() { int n = MAX; // In general Sieve of Sundaram produces // primes smaller than (2*x + 2) for a // number given number x int nNew = (int)Math.Sqrt(n); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j int[] marked = new int[n / 2 + 500]; // eliminate indexes which does not produce primes for (int i = 1; i <= (nNew - 1) / 2; i++) for (int j = (i * (i + 1)) << 1; j <= n / 2; j = j + 2 * i + 1) marked[j] = 1; // Since 2 is a prime number primes.Add(2); // Remaining primes are of the form 2*i + 1 // such that marked[i] is false. for (int i = 1; i <= n / 2; i++) if (marked[i] == 0) primes.Add(2 * i + 1); } // modified binary search to find // nearest prime less than N static int binarySearch(int left int right int n) { if (left <= right) { int mid = (left + right) / 2; // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.Count - 1) return (int)primes[mid]; // now if n is itself a prime so it will be // present in primes array and here we have // to find nearest prime less than n so we // will return primes[mid-1] if ((int)primes[mid] == n) return (int)primes[mid - 1]; // now if primes[mid]n // that mean we reached at nearest prime if ((int)primes[mid] < n && (int)primes[mid + 1] > n) return (int)primes[mid]; if (n < (int)primes[mid]) return binarySearch(left mid - 1 n); else return binarySearch(mid + 1 right n); } return 0; } // Driver code static void Main() { Sieve(); int n = 17; Console.WriteLine(binarySearch(0 primes.Count - 1 n)); } } // This code is contributed by chandan_jnu
PHP // PHP program to find the nearest // prime to n. $MAX = 10000; // array to store all primes less // than 10^6 $primes = array(); // Utility function of Sieve of Sundaram function Sieve() { global $MAX $primes; $n = $MAX; // In general Sieve of Sundaram produces // primes smaller than (2*x + 2) for a // number given number x $nNew = (int)(sqrt($n)); // This array is used to separate numbers // of the form i+j+2ij from others where // 1 <= i <= j $marked = array_fill(0 (int)($n / 2 + 500) 0); // eliminate indexes which does not // produce primes for ($i = 1; $i <= ($nNew - 1) / 2; $i++) for ($j = ($i * ($i + 1)) << 1; $j <= $n / 2; $j = $j + 2 * $i + 1) $marked[$j] = 1; // Since 2 is a prime number array_push($primes 2); // Remaining primes are of the form // 2*i + 1 such that marked[i] is false. for ($i = 1; $i <= $n / 2; $i++) if ($marked[$i] == 0) array_push($primes 2 * $i + 1); } // modified binary search to find nearest // prime less than N function binarySearch($left $right $n) { global $primes; if ($left <= $right) { $mid = (int)(($left + $right) / 2); // base condition is if we are reaching // at left corner or right corner of // primes[] array then return that corner // element because before or after that // we don't have any prime number in // primes array if ($mid == 0 || $mid == count($primes) - 1) return $primes[$mid]; // now if n is itself a prime so it will // be present in primes array and here // we have to find nearest prime less than // n so we will return primes[mid-1] if ($primes[$mid] == $n) return $primes[$mid - 1]; // now if primes[mid]n // that means we reached at nearest prime if ($primes[$mid] < $n && $primes[$mid + 1] > $n) return $primes[$mid]; if ($n < $primes[$mid]) return binarySearch($left $mid - 1 $n); else return binarySearch($mid + 1 $right $n); } return 0; } // Driver Code Sieve(); $n = 17; echo binarySearch(0 count($primes) - 1 $n); // This code is contributed by chandan_jnu ?> JavaScript <script> // JavaScript program to find the nearest prime to n. // array to store all primes less than 10^6 var primes = []; // Utility function of Sieve of Sundaram var MAX = 1000000; function Sieve() { let n = MAX; // In general Sieve of Sundaram produces primes // smaller than (2*x + 2) for a number given // number x let nNew = parseInt(Math.sqrt(n)); // This array is used to separate numbers of the // form i+j+2ij from others where 1 <= i <= j var marked = new Array(n / 2 + 500).fill(0); // eliminate indexes which does not produce primes for (let i = 1; i <= parseInt((nNew - 1) / 2); i++) for (let j = (i * (i + 1)) << 1; j <= parseInt(n / 2); j = j + 2 * i + 1) marked[j] = 1; // Since 2 is a prime number primes.push(2); // Remaining primes are of the form 2*i + 1 such // that marked[i] is false. for (let i = 1; i <= parseInt(n / 2); i++) if (marked[i] == 0) primes.push(2 * i + 1); } // modified binary search to find nearest prime less than N function binarySearch(left right n) { if (left <= right) { let mid = parseInt((left + right) / 2); // base condition is if we are reaching at left // corner or right corner of primes[] array then // return that corner element because before or // after that we don't have any prime number in // primes array if (mid == 0 || mid == primes.length - 1) return primes[mid]; // now if n is itself a prime so it will be present // in primes array and here we have to find nearest // prime less than n so we will return primes[mid-1] if (primes[mid] == n) return primes[mid - 1]; // now if primes[mid]n that // mean we reached at nearest prime if (primes[mid] < n && primes[mid + 1] > n) return primes[mid]; if (n < primes[mid]) return binarySearch(left mid - 1 n); else return binarySearch(mid + 1 right n); } return 0; } // Driver program to run the case Sieve(); let n = 17; document.write(binarySearch(0 primes.length - 1 n)); // This code is contributed by Potta Lokesh </script>
Uitvoer
13
Tijdcomplexiteit: O(n log n)
Ruimtecomplexiteit: O(n)
Een andere aanpak (Trial Division-methode):
Begin met het controleren op priemgetallen door het gegeven getal n te delen door alle getallen kleiner dan n. Het eerste priemgetal dat je tegenkomt, is het dichtstbijzijnde priemgetal kleiner dan n.
een array in Java
Algoritme:
- Initialiseer een variabele genaamd 'prime' naar 0.
- Beginnend bij n-1 doorloop je alle getallen kleiner dan n in afnemende volgorde.
- Voor elk nummer voer ik de volgende stappen uit:
A. Initialiseer een variabele genaamd 'is_prime' naar true.
B. Vanaf 2 doorloop je alle getallen kleiner dan i in oplopende volgorde.
C. Controleer voor elk getal j of j i deelt zonder een rest achter te laten. Als j zich deelt, stel ik 'is_prime' in op false en breek ik uit de lus.
D. Als 'is_prime' nog steeds waar is na het controleren van alle mogelijke delers, stel dan 'prime' in op i en breek uit de lus. - Retourneert 'priemgetal' als het dichtstbijzijnde priemgetal kleiner dan n.
Hieronder vindt u de implementatie van de bovenstaande aanpak:
C++// CPP code to find the nearest prime to N // Using Trial Division method #include #include using namespace std; // Function to find the nearest prime to N // Using Trial Division method bool is_prime(int n) { if (n <= 1) { return false; } for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { return false; } } return true; } int nearest_prime(int n) { int prime = 0; for (int i = n-1; i >= 2; i--) { if (is_prime(i)) { prime = i; break; } } return prime; } int main() { int n = 17; int prime = nearest_prime(n); if (prime == 0) { cout << 'There is no prime less than ' << n << endl; } else { cout << prime << endl; } return 0; } // This code is contributed by Susobhan Akhuli
Java // Java code to find the nearest prime to N // Using Trial Division method import java.util.*; public class GFG { // Function to find the nearest prime to N // Using Trial Division method public static boolean isPrime(int n) { if (n <= 1) { return false; } for (int i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) { return false; } } return true; } public static int nearestPrime(int n) { int prime = 0; for (int i = n - 1; i >= 2; i--) { if (isPrime(i)) { prime = i; break; } } return prime; } public static void main(String[] args) { int n = 17; int prime = nearestPrime(n); if (prime == 0) { System.out.println( 'There is no prime less than ' + n); } else { System.out.println(prime); } } } // This code is contributed by Susobhan Akhuli
Python3 # Python code to find the nearest prime to N # using Trial Division method import math # Function to check if a number is prime or not def is_prime(n): if n <= 1: return False for i in range(2 int(math.sqrt(n)) + 1): if n % i == 0: return False return True # Function to find the nearest prime to N # Using Trial Division method def nearest_prime(n): prime = 0 for i in range(n - 1 1 -1): if is_prime(i): prime = i break return prime # Main function to test the above functions if __name__ == '__main__': n = 17 prime = nearest_prime(n) if prime == 0: print(f'There is no prime less than {n}') else: print(prime) # This code is contributed by sankar.
C# // C# code implementation for the above approach using System; public class GFG { // Function to check if a number is prime static bool IsPrime(int n) { if (n <= 1) { return false; } for (int i = 2; i <= Math.Sqrt(n); i++) { if (n % i == 0) { return false; } } return true; } // Function to find the nearest prime to n static int NearestPrime(int n) { int prime = 0; for (int i = n - 1; i >= 2; i--) { if (IsPrime(i)) { prime = i; break; } } return prime; } static public void Main() { // Code int n = 17; int prime = NearestPrime(n); if (prime == 0) { Console.WriteLine('There is no prime less than ' + n); } else { Console.WriteLine(prime); } } } // This code is contributed by karthik.
JavaScript // Javascript code to find the nearest prime to N // Using Trial Division method // Function to check if a number is prime function isPrime(n) { if (n <= 1) { return false; } for (let i = 2; i <= Math.sqrt(n); i++) { if (n % i === 0) { return false; } } return true; } // Function to find the nearest prime to n function nearestPrime(n) { let prime = 0; for (let i = n - 1; i >= 2; i--) { if (isPrime(i)) { prime = i; break; } } return prime; } let n = 17; let prime = nearestPrime(n); if (prime === 0) { console.log('There is no prime less than ' + n); } else { console.log(prime); } // This code is contributed by karthik.
Uitvoer
13
Tijdcomplexiteit: O(N* sqrt(N))
Hulpruimte: O(1)
Als u een andere aanpak heeft om dit probleem op te lossen, kunt u dit in de reacties delen.