Gegeven een array arr[] van grootte N . De taak is om de som van de aangrenzende subarray binnen a te vinden arr[] met het grootste bedrag.
Voorbeeld:
Invoer: arr = {-2,-3,4,-1,-2,1,5,-3}
Uitgang: 7
Uitleg: De subarray {4,-1, -2, 1, 5} heeft de grootste som 7.Invoer: arr = {2}
Uitgang: 2
Uitleg: De subarray {2} heeft de grootste som 1.Invoer: arr = {5,4,1,7,8}
Uitgang: 25
Uitleg: De subarray {5,4,1,7,8} heeft de grootste som 25.
Het idee van Kadane's algoritme is het behouden van een variabele max_ending_hier waarin de maximale som van de aaneengesloten subarray wordt opgeslagen die eindigt op de huidige index en een variabele max_so_far slaat de maximale som op van aaneengesloten subarrays die tot nu toe zijn gevonden, elke keer dat er een positieve somwaarde in zit max_ending_hier vergelijk het met max_so_far en bijwerken max_so_far als het groter is dan max_so_far .
Dus de belangrijkste Intuïtie achter Het algoritme van Kadane is,
- De subarray met een negatieve som wordt weggegooid ( door max_ending_here = 0 in code toe te wijzen ).
- We dragen de subarray totdat deze een positieve som oplevert.
Pseudocode van Kadane’s algoritme:
Initialiseren:
max_so_far = INT_MIN
max_ending_hier = 0Lus voor elk element van de array
(a) max_ending_hier = max_ending_hier + a[i]
(b) if(max_so_far
max_so_far = max_ending_hier
(c) if(max_ending_hier <0)
max_ending_hier = 0
retourneer max_so_far
Illustratie van het algoritme van Kadane:
Laten we het voorbeeld nemen: {-2, -3, 4, -1, -2, 1, 5, -3}
Opmerking : in de afbeelding wordt max_so_far weergegeven door Max_Som en max_ending_hier door Curr_Som
Voor i=0 geldt a[0] = -2
wat is een gebruikersnaam
- max_ending_hier = max_ending_hier + (-2)
- Stel max_ending_here = 0 in omdat max_ending_here <0
- en stel max_so_far = -2 in
Voor i=1 geldt a[1] = -3
- max_ending_hier = max_ending_hier + (-3)
- Omdat max_ending_here = -3 en max_so_far = -2, blijft max_so_far -2
- Stel max_ending_here = 0 in omdat max_ending_here <0
Voor i=2, a[2] = 4
- max_ending_hier = max_ending_hier + (4)
- max_ending_hier = 4
- max_so_far is bijgewerkt naar 4 omdat max_ending_her groter is dan max_so_far, wat tot nu toe -2 was
Voor i=3 geldt a[3] = -1
- max_ending_hier = max_ending_hier + (-1)
- max_ending_hier = 3
Voor i=4 geldt a[4] = -2
- max_ending_hier = max_ending_hier + (-2)
- max_ending_hier = 1
Voor i=5 is a[5] = 1
- max_ending_hier = max_ending_hier + (1)
- max_ending_hier = 2
Voor i=6 is a[6] = 5
- max_ending_hier = max_ending_hier + (5)
- max_ending_hier =
- max_so_far is bijgewerkt naar 7 omdat max_ending_here groter is dan max_so_far
Voor i=7 geldt a[7] = -3
- max_ending_hier = max_ending_hier + (-3)
- max_ending_hier = 4
Volg de onderstaande stappen om het idee te implementeren:
- Initialiseer de variabelen max_so_far = INT_MIN en max_ending_hier = 0
- Voer een for-lus uit vanaf 0 naar N-1 en voor elke index i :
- Voeg de arr[i] toe naar max_ending_hier.
- Als max_so_far kleiner is dan max_ending_here, update dan max_so_far naar max_ending_hier .
- Als max_ending_here <0, update dan max_ending_here = 0
- Retourneer max_so_far
Hieronder vindt u de implementatie van de bovenstaande aanpak.
C++ // C++ program to print largest contiguous array sum #include using namespace std; int maxSubArraySum(int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver Code int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); // Function Call int max_sum = maxSubArraySum(a, n); cout << 'Maximum contiguous sum is ' << max_sum; return 0; }>
Java // Java program to print largest contiguous array sum import java.io.*; import java.util.*; class Kadane { // Driver Code public static void main(String[] args) { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; System.out.println('Maximum contiguous sum is ' + maxSubArraySum(a)); } // Function Call static int maxSubArraySum(int a[]) { int size = a.length; int max_so_far = Integer.MIN_VALUE, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } }>
Python def GFG(a, size): max_so_far = float('-inf') # Use float('-inf') instead of maxint max_ending_here = 0 for i in range(0, size): max_ending_here = max_ending_here + a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here if max_ending_here < 0: max_ending_here = 0 return max_so_far # Driver function to check the above function a = [-2, -3, 4, -1, -2, 1, 5, -3] print('Maximum contiguous sum is', GFG(a, len(a)))>
C# // C# program to print largest // contiguous array sum using System; class GFG { static int maxSubArraySum(int[] a) { int size = a.Length; int max_so_far = int.MinValue, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here = max_ending_here + a[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } // Driver code public static void Main() { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; Console.Write('Maximum contiguous sum is ' + maxSubArraySum(a)); } } // This code is contributed by Sam007_>
Javascript >
PHP // PHP program to print largest // contiguous array sum function maxSubArraySum($a, $size) { $max_so_far = PHP_INT_MIN; $max_ending_here = 0; for ($i = 0; $i < $size; $i++) { $max_ending_here = $max_ending_here + $a[$i]; if ($max_so_far < $max_ending_here) $max_so_far = $max_ending_here; if ($max_ending_here < 0) $max_ending_here = 0; } return $max_so_far; } // Driver code $a = array(-2, -3, 4, -1, -2, 1, 5, -3); $n = count($a); $max_sum = maxSubArraySum($a, $n); echo 'Maximum contiguous sum is ' , $max_sum; // This code is contributed by anuj_67. ?>>
Uitvoer
Maximum contiguous sum is 7>
Tijdcomplexiteit: OP)
Hulpruimte: O(1)
Druk de grootste som aaneengesloten subarray af:
Om de subarray af te drukken met de maximale som die het idee is om te behouden begin index van maximum_sum_ending_hier tegen de huidige index, zodat wanneer dan ook maximale_som_so_far wordt bijgewerkt met maximum_sum_ending_hier vervolgens kunnen de startindex en de eindindex van de subarray worden bijgewerkt begin En huidige index .
Volg de onderstaande stappen om het idee te implementeren:
- Initialiseer de variabelen S , begin, En einde met 0 En max_so_far = INT_MIN en max_ending_hier = 0
- Voer een for-lus uit vanaf 0 naar N-1 en voor elke index i :
- Voeg de arr[i] toe naar max_ending_hier.
- Als max_so_far kleiner is dan max_ending_here, update dan max_so_far naar max_ending_here en update begin naar S En einde naar i .
- Als max_ending_here <0, update dan max_ending_here = 0 en S met ik+1 .
- Waarden uit index afdrukken begin naar einde .
Hieronder vindt u de implementatie van bovenstaande aanpak:
C++ // C++ program to print largest contiguous array sum #include #include using namespace std; void maxSubArraySum(int a[], int size) { int max_so_far = INT_MIN, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } cout << 'Maximum contiguous sum is ' << max_so_far << endl; cout << 'Starting index ' << start << endl << 'Ending index ' << end << endl; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); maxSubArraySum(a, n); return 0; }>
Java // Java program to print largest // contiguous array sum import java.io.*; import java.util.*; class GFG { static void maxSubArraySum(int a[], int size) { int max_so_far = Integer.MIN_VALUE, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } System.out.println('Maximum contiguous sum is ' + max_so_far); System.out.println('Starting index ' + start); System.out.println('Ending index ' + end); } // Driver code public static void main(String[] args) { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.length; maxSubArraySum(a, n); } } // This code is contributed by prerna saini>
Python # Python program to print largest contiguous array sum from sys import maxsize # Function to find the maximum contiguous subarray # and print its starting and end index def maxSubArraySum(a, size): max_so_far = -maxsize - 1 max_ending_here = 0 start = 0 end = 0 s = 0 for i in range(0, size): max_ending_here += a[i] if max_so_far < max_ending_here: max_so_far = max_ending_here start = s end = i if max_ending_here < 0: max_ending_here = 0 s = i+1 print('Maximum contiguous sum is %d' % (max_so_far)) print('Starting Index %d' % (start)) print('Ending Index %d' % (end)) # Driver program to test maxSubArraySum a = [-2, -3, 4, -1, -2, 1, 5, -3] maxSubArraySum(a, len(a))>
C# // C# program to print largest // contiguous array sum using System; class GFG { static void maxSubArraySum(int[] a, int size) { int max_so_far = int.MinValue, max_ending_here = 0, start = 0, end = 0, s = 0; for (int i = 0; i < size; i++) { max_ending_here += a[i]; if (max_so_far < max_ending_here) { max_so_far = max_ending_here; start = s; end = i; } if (max_ending_here < 0) { max_ending_here = 0; s = i + 1; } } Console.WriteLine('Maximum contiguous ' + 'sum is ' + max_so_far); Console.WriteLine('Starting index ' + start); Console.WriteLine('Ending index ' + end); } // Driver code public static void Main() { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = a.Length; maxSubArraySum(a, n); } } // This code is contributed // by anuj_67.>
Javascript >
PHP // PHP program to print largest // contiguous array sum function maxSubArraySum($a, $size) { $max_so_far = PHP_INT_MIN; $max_ending_here = 0; $start = 0; $end = 0; $s = 0; for ($i = 0; $i < $size; $i++) { $max_ending_here += $a[$i]; if ($max_so_far < $max_ending_here) { $max_so_far = $max_ending_here; $start = $s; $end = $i; } if ($max_ending_here < 0) { $max_ending_here = 0; $s = $i + 1; } } echo 'Maximum contiguous sum is '. $max_so_far.'
'; echo 'Starting index '. $start . '
'. 'Ending index ' . $end . '
'; } // Driver Code $a = array(-2, -3, 4, -1, -2, 1, 5, -3); $n = sizeof($a); maxSubArraySum($a, $n); // This code is contributed // by ChitraNayal ?>>
Uitvoer
Maximum contiguous sum is 7 Starting index 2 Ending index 6>
Tijdcomplexiteit: Op)
Hulpruimte: O(1)
Grootste som aaneengesloten subarray gebruikt Dynamisch programmeren :
Voor elke index i slaat DP[i] de maximaal mogelijke Largest Sum Contiguous Subarray op, eindigend op index i, en daarom kunnen we DP[i] berekenen met behulp van de genoemde toestandsovergang:
- DP[i] = max(DP[i-1] + arr[i] , arr[i] )
Hieronder vindt u de implementatie:
C++ // C++ program to print largest contiguous array sum #include using namespace std; void maxSubArraySum(int a[], int size) { vector dp(grootte, 0); dp[0] = a[0]; int ans = dp[0]; voor (int i = 1; ik< size; i++) { dp[i] = max(a[i], a[i] + dp[i - 1]); ans = max(ans, dp[i]); } cout << ans; } /*Driver program to test maxSubArraySum*/ int main() { int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 }; int n = sizeof(a) / sizeof(a[0]); maxSubArraySum(a, n); return 0; }>
Java import java.util.Arrays; public class Main { // Function to find the largest contiguous array sum public static void maxSubArraySum(int[] a) { int size = a.length; int[] dp = new int[size]; // Create an array to store intermediate results dp[0] = a[0]; // Initialize the first element of the intermediate array with the first element of the input array int ans = dp[0]; // Initialize the answer with the first element of the intermediate array for (int i = 1; i < size; i++) { // Calculate the maximum of the current element and the sum of the current element and the previous result dp[i] = Math.max(a[i], a[i] + dp[i - 1]); // Update the answer with the maximum value encountered so far ans = Math.max(ans, dp[i]); } // Print the maximum contiguous array sum System.out.println(ans); } public static void main(String[] args) { int[] a = { -2, -3, 4, -1, -2, 1, 5, -3 }; maxSubArraySum(a); // Call the function to find and print the maximum contiguous array sum } } // This code is contributed by shivamgupta310570>
Python # Python program for the above approach def max_sub_array_sum(a, size): # Create a list to store intermediate results dp = [0] * size # Initialize the first element of the list with the first element of the array dp[0] = a[0] # Initialize the answer with the first element of the array ans = dp[0] # Loop through the array starting from the second element for i in range(1, size): # Choose the maximum value between the current element and the sum of the current element # and the previous maximum sum (stored in dp[i - 1]) dp[i] = max(a[i], a[i] + dp[i - 1]) # Update the overall maximum sum ans = max(ans, dp[i]) # Print the maximum contiguous subarray sum print(ans) # Driver program to test max_sub_array_sum if __name__ == '__main__': # Sample array a = [-2, -3, 4, -1, -2, 1, 5, -3] # Get the length of the array n = len(a) # Call the function to find the maximum contiguous subarray sum max_sub_array_sum(a, n) # This code is contributed by Susobhan Akhuli>
C# using System; class MaxSubArraySum { // Function to find and print the maximum sum of a // subarray static void FindMaxSubArraySum(int[] arr, int size) { // Create an array to store the maximum sum of // subarrays int[] dp = new int[size]; // Initialize the first element of dp with the first // element of arr dp[0] = arr[0]; // Initialize a variable to store the final result int ans = dp[0]; // Iterate through the array to find the maximum sum for (int i = 1; i < size; i++) { // Calculate the maximum sum ending at the // current position dp[i] = Math.Max(arr[i], arr[i] + dp[i - 1]); // Update the final result with the maximum sum // found so far ans = Math.Max(ans, dp[i]); } // Print the maximum sum of the subarray Console.WriteLine(ans); } // Driver program to test FindMaxSubArraySum static void Main() { // Example array int[] arr = { -2, -3, 4, -1, -2, 1, 5, -3 }; // Calculate and print the maximum subarray sum FindMaxSubArraySum(arr, arr.Length); } }>
Javascript // Javascript program to print largest contiguous array sum // Function to find the largest contiguous array sum function maxSubArraySum(a) { let size = a.length; // Create an array to store intermediate results let dp = new Array(size); // Initialize the first element of the intermediate array with the first element of the input array dp[0] = a[0]; // Initialize the answer with the first element of the intermediate array let ans = dp[0]; for (let i = 1; i < size; i++) { // Calculate the maximum of the current element and the sum of the current element and the previous result dp[i] = Math.max(a[i], a[i] + dp[i - 1]); // Update the answer with the maximum value encountered so far ans = Math.max(ans, dp[i]); } // Print the maximum contiguous array sum console.log(ans); } let a = [-2, -3, 4, -1, -2, 1, 5, -3]; // Call the function to find and print the maximum contiguous array sum maxSubArraySum(a);>
Uitvoer
7>
Oefenprobleem:
selectie sorteren in Java
Gegeven een array van gehele getallen (mogelijk zijn sommige elementen negatief), schrijf dan een C-programma om het *maximale product* te vinden dat mogelijk is door ‘n’ opeenvolgende gehele getallen in de array te vermenigvuldigen waarbij n ? ARRAY_SIZE. Druk ook het startpunt van de maximale productsubarray af.