Een getal wordt gelukkig genoemd als het leidt tot 1 na een reeks stappen waarin elk stapnummer wordt vervangen door de som van de kwadraten van het cijfer. Dat wil zeggen dat als we beginnen met Happy Number en dit blijven vervangen door cijfers in het kwadraat, we 1 bereiken.
Voorbeelden:
Input: n = 19
Output: True
19 is Happy Number
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
As we reached to 1 19 is a Happy Number.
Input: n = 20
Output: False
Een getal zal geen gelukkig getal zijn als het een lus in zijn reeks maakt, dat wil zeggen dat het een getal in de reeks raakt dat al is aangeraakt. Dus om te controleren of een getal wel of niet gelukkig is, kunnen we een set behouden als hetzelfde getal opnieuw voorkomt, markeren we het resultaat als niet gelukkig. Een eenvoudige functie voor de bovenstaande benadering kan als volgt worden geschreven:
latexlijstenC++
// method return true if n is Happy Number int numSquareSum(int n) { int num = 0; while (n != 0) { int digit = n % 10; num += digit * digit; n /= 10; } return num; } int isHappyNumber(int n) { set<int> st; while (1) { n = numSquareSum(n); if (n == 1) return true; if (st.find(n) != st.end()) return false; st.insert(n); } }
Java // method return true if n is Happy Number public static int numSquareSum(int n) { int num = 0; while (n != 0) { int digit = n % 10; num += digit * digit; n /= 10; } return num; } static boolean isHappyNumber(int n) { HashSet<Integer> st = new HashSet<>(); while (true) { n = numSquareSum(n); if (n == 1) return true; if (st.contains(n)) return false; st.add(n); } } // This code is contributed by Princi Singh
Python # method return true if n is Happy Number def numSquareSum(n): num = 0 while(n): digit = n % 10 num = num + digit*digit n = n // 10 return num def isHappyNumber(n): st = set() while (1): n = numSquareSum(n) if (n == 1): return True if n not in st: return False st.insert(n)
C# // Method return true if n is Happy Number static int numSquareSum(int n) { int num = 0; while (n != 0) { int digit = n % 10; num += digit * digit; n /= 10; } return num; } static int isHappyNumber(int n) { HashSet<int> st = new HashSet<>(); while (1) { n = numSquareSum(n); if (n == 1) return true; if (st.Contains(n)) return false; st.Add(n); } } // This code is contributed by 29AjayKumar
JavaScript <script> // method return true if n is Happy Number function numSquareSum(n) { let num = 0; while (n !== 0) { let digit = n % 10; num += digit * digit; n = Math.floor(n / 10); } return num; } let st = new Set(); while (1) { n = numSquareSum(n); if (n == 1) return true; if (st.has(n)) return false; st.add(n); } } //This code is contributed by Mayank Tyagi </script>
Complexiteitsanalyse:
Tijdcomplexiteit: O(n*log(n)).
Hulpruimte: O(n) sinds gebruik van extra set voor opslag
arp-opdracht
We kunnen dit probleem oplossen zonder extra ruimte te gebruiken en die techniek kan ook bij andere soortgelijke problemen worden gebruikt. Als we elk getal als een knooppunt behandelen en vervanging door een vierkant somcijfer als een link, dan is dit probleem hetzelfde als het vinden van een lus in een linklijst :
Dus als voorgestelde oplossing uit de bovenstaande link zullen we twee getallen langzaam en snel houden, beide initialiseren vanaf een bepaald getal langzaam wordt stap voor stap vervangen en snel wordt twee stappen tegelijk vervangen. Als ze elkaar om 1 uur ontmoeten, is het opgegeven nummer Happy Number, anders niet.
C++// C++ program to check a number is a Happy number or not #include using namespace std; // Utility method to return sum of square of digit of n int numSquareSum(int n) { int squareSum = 0; while (n) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if n is Happy number bool isHappynumber(int n) { int slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number by one iteration slow = numSquareSum(slow); // move fast number by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 then return true return (slow == 1); } // Driver code to test above methods int main() { int n = 13; if (isHappynumber(n)) cout << n << ' is a Happy numbern'; else cout << n << ' is not a Happy numbern'; } // This code is contributed by divyeshrabadiya07
C // C program to check a number is a Happy number or not #include #include // Utility method to return sum of square of digit of n int numSquareSum(int n) { int squareSum = 0; while (n) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if n is Happy number bool isHappynumber(int n) { int slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number by one iteration slow = numSquareSum(slow); // move fast number by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 then return true return (slow == 1); } // Driver code to test above methods int main() { int n = 13; if (isHappynumber(n)) printf('%d is a Happy numbern' n); else printf('%d is not a Happy numbern' n); } // This code is contributed by Sania Kumari Gupta // (kriSania804)
Java // Java program to check a number is a Happy // number or not class GFG { // Utility method to return sum of square of // digit of n static int numSquareSum(int n) { int squareSum = 0; while (n!= 0) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if n is Happy number static boolean isHappynumber(int n) { int slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number // by one iteration slow = numSquareSum(slow); // move fast number // by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 // then return true return (slow == 1); } // Driver code to test above methods public static void main(String[] args) { int n = 13; if (isHappynumber(n)) System.out.println(n + ' is a Happy number'); else System.out.println(n + ' is not a Happy number'); } }
Python # Python3 program to check if a number is a Happy number or not # Utility method to return the sum of squares of digits of n def num_square_sum(n): square_sum = 0 while n: square_sum += (n % 10) ** 2 n //= 10 return square_sum # Method returns True if n is a Happy number def is_happy_number(n): # Initialize slow and fast pointers slow = n fast = n while True: # Move slow pointer by one iteration slow = num_square_sum(slow) # Move fast pointer by two iterations fast = num_square_sum(num_square_sum(fast)) if slow != fast: continue else: break # If both pointers meet at 1 then return True return slow == 1 # Driver Code n = 13 if is_happy_number(n): print(n 'is a Happy number') else: print(n 'is not a Happy number')
C# // C# program to check a number // is a Happy number or not using System; class GFG { // Utility method to return // sum of square of digit of n static int numSquareSum(int n) { int squareSum = 0; while (n!= 0) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if // n is Happy number static bool isHappynumber(int n) { int slow fast; // initialize slow and // fast by n slow = fast = n; do { // move slow number // by one iteration slow = numSquareSum(slow); // move fast number // by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 // then return true return (slow == 1); } // Driver code public static void Main() { int n = 13; if (isHappynumber(n)) Console.WriteLine(n + ' is a Happy number'); else Console.WriteLine(n + ' is not a Happy number'); } } // This code is contributed by anuj_67.
JavaScript <script> // Javascript program to check a number is a Happy // number or not // Utility method to return sum of square of // digit of n function numSquareSum(n) { var squareSum = 0; while (n!= 0) { squareSum += (n % 10) * (n % 10); n = parseInt(n/10); } return squareSum; } // method return true if n is Happy number function isHappynumber(n) { var slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number // by one iteration slow = numSquareSum(slow); // move fast number // by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 // then return true return (slow == 1); } // Driver code to test above methods var n = 13; if (isHappynumber(n)) document.write(n + ' is a Happy number'); else document.write(n + ' is not a Happy number'); // This code contributed by Princi Singh </script>
PHP // PHP program to check a number // is a Happy number or not // Utility method to return // sum of square of digit of n function numSquareSum( $n) { $squareSum = 0; while ($n) { $squareSum += ($n % 10) * ($n % 10); $n /= 10; } return $squareSum; } // method return true if // n is Happy number function isHappynumber( $n) { $slow; $fast; // initialize slow // and fast by n $slow = $n; $fast = $n; do { // move slow number // by one iteration $slow = numSquareSum($slow); // move fast number // by two iteration $fast = numSquareSum(numSquareSum($fast)); } while ($slow != $fast); // if both number meet at 1 // then return true return ($slow == 1); } // Driver Code $n = 13; if (isHappynumber($n)) echo $n ' is a Happy numbern'; else echo n ' is not a Happy numbern'; // This code is contributed by anuj_67. ?> Uitgang:
13 is a Happy NumberComplexiteitsanalyse:
Tijdcomplexiteit: O(n*log(n)).
Hulpruimte: O(1).
Een andere benadering om dit probleem op te lossen zonder extra ruimte.
Een getal kan geen gelukkig getal zijn als bij welke stap dan ook de som van het kwadraat van de verkregen cijfers een getal van één cijfer is, behalve 1 of 7 . Dit komt omdat 1 en 7 de enige gelukkige getallen van één cijfer zijn. Met behulp van deze informatie kunnen we een aanpak ontwikkelen zoals weergegeven in de onderstaande code:
// C++ program to check if a number is a Happy number or // not. #include using namespace std; // Method - returns true if the input is a happy number else // returns false bool isHappynumber(int n) { int sum = n x = n; // This loop executes till the sum of square of digits // obtained is not a single digit number while (sum > 9) { sum = 0; // This loop finds the sum of square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 7 || sum == 1) return true; return false; } int main() { int n = 13; if (isHappynumber(n)) cout << n << ' is a Happy number'; else cout << n << ' is not a Happy number'; return 0; } // This code is contributed by Sania Kumari Gupta
C // C program to check if a number is a Happy number or // not. #include #include // Method - returns true if the input is a happy number else // returns false bool isHappynumber(int n) { int sum = n x = n; // This loop executes till the sum of square of digits // obtained is not a single digit number while (sum > 9) { sum = 0; // This loop finds the sum of square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 7 || sum == 1) return true; return false; } int main() { int n = 13; if (isHappynumber(n)) printf('%d is a Happy number' n); else printf('%d is not a Happy number' n); return 0; } // This code is contributed by Sania Kumari Gupta
Java // This code is contributed by Vansh Sodhi. // Java program to check if a number is a Happy number or // not. class GFG { // method - returns true if the input is a happy // number else returns false static boolean isHappynumber(int n) { int sum = n x = n; // this loop executes till the sum of square of // digits obtained is not a single digit number while (sum > 9) { sum = 0; // this loop finds the sum of square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 1 || sum == 7) return true; return false; } // Driver code public static void main(String[] args) { int n = 13; if (isHappynumber(n)) System.out.println(n + ' is a Happy number'); else System.out.println(n + ' is not a Happy number'); } }
Python # Python3 program to check if a number is a Happy number or not. # Method - returns true if the input is # a happy number else returns false def isHappynumber(n): Sum x = n n # This loop executes till the sum # of square of digits obtained is # not a single digit number while Sum > 9: Sum = 0 # This loop finds the sum of # square of digits while x > 0: d = x % 10 Sum += d * d x = int(x / 10) x = Sum if Sum == 1 or Sum == 7: return True return False n = 13 if isHappynumber(n): print(n 'is a Happy number') else: print(n 'is not a Happy number') # This code is contributed by mukesh07.
C# // C# program to check if a number // is a Happy number or not. using System; class GFG { // Method - returns true if the input is // a happy number else returns false static bool isHappynumber(int n) { int sum = n x = n; // This loop executes till the sum // of square of digits obtained is // not a single digit number while (sum > 9) { sum = 0; // This loop finds the sum of // square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 1 || sum == 7) return true; return false; } // Driver code public static void Main(String[] args) { int n = 13; if (isHappynumber(n)) Console.WriteLine(n + ' is a Happy number'); else Console.WriteLine(n + ' is not a Happy number'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // This code is contributed by Vansh Sodhi. // javascript program to check if a number is a Happy number or not. // method - returns true if the input is a happy // number else returns false function isHappynumber(n) { var sum = n x = n; // this loop executes till the sum of square of // digits obtained is not a single digit number while(sum > 9) { sum = 0; // this loop finds the sum of square of digits while (x > 0) { var d = x % 10; sum += d * d; x /= 10; } x = sum; } if(sum == 1 || sum == 7) return true; return false; } // Driver code var n = 13; if (isHappynumber(n)) document.write(n + ' is a Happy number'); else document.write(n + ' is not a Happy number'); // This code is contributed by 29AjayKumar </script>
Uitvoer
13 is a Happy number
Complexiteitsanalyse:
willekeurig getal in Java
Tijdcomplexiteit: O(n*log(n)).
Hulpruimte: O(1).
Zie uw artikel verschijnen op de hoofdpagina van GeeksforGeeks en help andere Geeks.