Gegeven N modulaire vergelijkingen: A ? X1mod(m1) . . A ? XNmod(mN) Zoek x in de vergelijking A ? xmod(m1*M2*M3..*MN) waar miis een priemgetal of een macht van een priemgetal en i neemt waarden aan van 1 tot n. De invoer wordt gegeven als twee arrays, waarvan de eerste een array is die waarden van elke x bevatien de tweede array die de reeks waarden van elk priemgetal bevat. MiVoer een geheel getal uit voor de waarde van x in de uiteindelijke vergelijking.
Voorbeelden:
Consider the two equations A ? 2mod(3) A ? 3mod(5) Input : 2 3 3 5 Output : 8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11) Input : 3 4 1 0 4 7 9 11 Output : 1243
Uitleg : We streven ernaar deze vergelijkingen met twee tegelijk op te lossen. We nemen de eerste twee vergelijkingen, combineren deze en gebruiken dat resultaat om te combineren met de derde vergelijking, enzovoort. Het proces van het combineren van twee vergelijkingen wordt als volgt uitgelegd door voorbeeld 2 ter referentie te nemen:
- A ? 3mod(4) en A ? 4mod(7) zijn de twee vergelijkingen die ons in eerste instantie ter beschikking staan. Laat de resulterende vergelijking een soort A zijn? Xmod(m1* M2).
- Awordt gegeven door m1' * M1* X+ m' * M* X1waar m1' = modulaire inverse van m1module men m' = modulaire inverse van mmodule m1
- We kunnen de modulaire inverse berekenen met behulp van een uitgebreid euclidisch algoritme.
- Wij vinden xA zijnmod (m1* M2)
- We krijgen dat onze nieuwe vergelijking A is? 11mod(28) waarbij A 95 is
- We proberen dit nu te combineren met vergelijking 3 en op een vergelijkbare manier krijgen we A ? 235mod(252) waarbij A = 2503
- En als we dit tenslotte combineren met vergelijking 4, krijgen we A ? 1243mod(2772) waarbij A = 59455 en x = 1243
We zien dat 2772 terecht gelijk is aan 4 * 7 * 9 * 11. We hebben dus de waarde van x gevonden voor de uiteindelijke vergelijking. U kunt verwijzen naar Uitgebreid Euclidisch algoritme En Modulaire multiplicatieve inverse voor extra informatie over deze onderwerpen.
C++// C++ program to combine modular equations // using Chinese Remainder Theorem #include using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){ if(a == 0){ vector<int> temp; temp.push_back(b); temp.push_back(0); temp.push_back(1); return temp; } else{ vector<int> temp(3); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } vector<int> temp; return temp; } // modular inverse driver function int modinv(int aint m){ vector<int> temp(3); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. int ans = x - (floor(x/(float)m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 int var1 = (modinv(m[1]m[0])); int var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.erase(x.begin()); x.erase(x.begin()); x.insert(x.begin() temp1%temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.erase(m.begin()); m.erase(m.begin()); m.insert(m.begin() temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.size()== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment int main(){ vector<int> m = {4 7 9 11}; vector<int> x = {3 4 1 0}; cout << crt(m x) << endl; return 0; } // The code is contributed by Gautam goel (gautamgoe962)
Java // Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem { // Function to calculate the modular inverse of a and m public static BigInteger modinv(BigInteger a BigInteger m) { BigInteger m0 = m; BigInteger y = BigInteger.ZERO; BigInteger x = BigInteger.ONE; if (m.equals(BigInteger.ONE)) return BigInteger.ZERO; while (a.compareTo(BigInteger.ONE) == 1) { BigInteger q = a.divide(m); BigInteger t = m; m = a.mod(m); a = t; t = y; y = x.subtract(q.multiply(y)); x = t; } if (x.compareTo(BigInteger.ZERO) == -1) x = x.add(m0); return x; } // Function to implement the Chinese Remainder Theorem public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) { BigInteger M = BigInteger.ONE; for (int i = 0; i < m.size(); i++) { M = M.multiply(m.get(i)); } BigInteger result = BigInteger.ZERO; for (int i = 0; i < m.size(); i++) { BigInteger Mi = M.divide(m.get(i)); BigInteger MiInv = modinv(Mi m.get(i)); result = result.add(x.get(i).multiply(Mi).multiply(MiInv)); } return result.mod(M); } public static void main(String[] args) { ArrayList<BigInteger> m = new ArrayList<>(); ArrayList<BigInteger> x = new ArrayList<>(); m.add(BigInteger.valueOf(4)); m.add(BigInteger.valueOf(7)); m.add(BigInteger.valueOf(9)); m.add(BigInteger.valueOf(11)); x.add(BigInteger.valueOf(3)); x.add(BigInteger.valueOf(4)); x.add(BigInteger.valueOf(1)); x.add(BigInteger.valueOf(0)); System.out.println(crt(m x)); } } // This code is contributed by Vikram_Shirsat
Python # Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value # of A. which is calculated according # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] + modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x)
C# using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld { // function that implements Extended euclidean // algorithm public static List<int> extended_euclidean(int aint b){ if(a == 0){ List<int> temp = new List<int>(); temp.Add(b); temp.Add(0); temp.Add(1); return temp; } else{ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp= extended_euclidean(b % a a); int g = temp[0]; int y = temp[1]; int x = temp[2]; temp[0] = g; temp[1] = x - ((b/a) * y); temp[2] = y; return temp; } List<int> temp1 = new List<int>(); return temp1; } // modular inverse driver function public static double modinv(int aint m){ List<int> temp = new List<int>(); temp.Add(0); temp.Add(0); temp.Add(0); temp = extended_euclidean(a m); int g = temp[0]; int x = temp[1]; int y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. double val = Math.Floor(((double)x/(double)m)); double ans = x - (val * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations public static int crt(List<int> mList<int> x) { // We run this loop while the list of // remainders has length greater than 1 while(true) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 double var1 = (modinv(m[1]m[0])); double var2 = (modinv(m[0]m[1])); // cout << var1 << ' ' << var2 << endl; double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining int temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.RemoveAt(0); x.RemoveAt(0); x.Insert(0 (int)temp1%(int)temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.RemoveAt(0); m.RemoveAt(0); m.Insert(0 temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.Count == 1){ break; } } // returns the remainder of the final equation return x[0]; } static void Main() { List<int> m = new List<int>(){ 4 7 9 11 }; List<int> x = new List<int> (){ 3 4 1 0 }; Console.WriteLine(crt(m x)); } } // The code is contributed by Nidhi goel.
JavaScript // JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){ if(a == 0){ let temp = [b 0 1]; return temp; } else{ let temp= extended_euclidean(b % a a); let g = temp[0]; let y = temp[1]; let x = temp[2]; temp[0] = g; temp[1] = x - (Math.floor(b/a) * y); temp[2] = y; return temp; } let temp; return temp; } // modular inverse driver function function modinv(a m){ let temp = extended_euclidean(a m); let g = temp[0]; let x = temp[1]; let y = temp[2]; // Since we are taking the modulo of // negative numbers so to have positive // output of the modulo we use this formula. let ans = x - (Math.floor(x/m) * m); return ans; } // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) { // We run this loop while the list of // remainders has length greater than 1 while(1) { // temp1 will contain the new value // of A. which is calculated according // to the equation m1' * m1 * x0 + m0' // * m0 * x1 let var1 = (modinv(m[1]m[0])); let var2 = (modinv(m[0]m[1]) ); // cout << var1 << ' ' << var2 << endl; let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0]; // temp2 contains the value of the modulus // in the new equation which will be the // product of the modulii of the two // equations that we are combining let temp2 = m[0] * m[1]; // cout << temp1<< ' '< // we then remove the first two elements // from the list of remainders and replace // it with the remainder value which will // be temp1 % temp2 x.shift(); x.shift(); x.unshift(temp1 % temp2); //we then remove the first two values from //the list of modulii as we no longer require // them and simply replace them with the new // modulii that we calculated m.shift(); m.shift(); m.unshift(temp2); // once the list has only one element left // we can break as it will only contain // the value of our final remainder if(x.length== 1){ break; } } // returns the remainder of the final equation return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17
Uitgang:
1243
Tijdcomplexiteit: O(l) waarbij l de grootte van de restlijst is.
Ruimtecomplexiteit: O(1) omdat we geen extra ruimte gebruiken.
Deze stelling en dit algoritme hebben uitstekende toepassingen. Een zeer nuttige toepassing is rekenenNCR% m waarbij m geen priemgetal is en Lucas-stelling kan niet rechtstreeks worden toegepast. In zo'n geval kunnen we de priemfactoren van m berekenen en de priemfactoren één voor één gebruiken als modulus in onzeNCR% m vergelijking die we kunnen berekenen met behulp van de stelling van Lucas en vervolgens de resulterende vergelijkingen kunnen combineren met behulp van de hierboven getoonde Chinese reststelling.
Quiz maken