importnumpyasnpa=np.array([[1357911][24681012]])# horizontal splittingprint('Splitting along horizontal axis into 2 parts:n'np.hsplit(a2))# vertical splittingprint('nSplitting along vertical axis into 2 parts:n'np.vsplit(a2))
De term broadcasting beschrijft hoe NumPy arrays met verschillende vormen behandelt tijdens rekenkundige bewerkingen. Afhankelijk van bepaalde beperkingen wordt de kleinere array 'uitgezonden' over de grotere array, zodat ze compatibele vormen hebben. Broadcasting biedt een manier om array-bewerkingen te vectoriseren, zodat looping plaatsvindt in C in plaats van Python. Het doet dit zonder onnodige kopieën van gegevens te maken en leidt meestal tot efficiënte algoritme-implementaties. Er zijn ook gevallen waarin uitzenden een slecht idee is, omdat dit leidt tot inefficiënt geheugengebruik, waardoor de berekeningen worden vertraagd. NumPy-bewerkingen worden meestal element voor element uitgevoerd, waarbij twee arrays exact dezelfde vorm moeten hebben. De uitzendregel van Numpy versoepelt deze beperking wanneer de vormen van de arrays aan bepaalde beperkingen voldoen. De uitzendregel: Om de grootte van de achterste assen voor beide arrays in een bewerking uit te zenden, moet deze ofwel dezelfde grootte hebben, ofwel moet een van hen dezelfde grootte hebben. een . Let us see some examples:
A(2-D array): 4 x 3 B(1-D array): 3 Result : 4 x 3
A(4-D array): 7 x 1 x 6 x 1 B(3-D array): 3 x 1 x 5 Result : 7 x 3 x 6 x 5
But this would be a mismatch:
A: 4 x 3 B: 4
The simplest broadcasting example occurs when an array and a scalar value are combined in an operation. Consider the example given below: Python
importnumpyasnpa=np.array([1.02.03.0])# Example 1b=2.0print(a*b)# Example 2c=[2.02.02.0]print(a*c)
Output:
[ 2. 4. 6.] [ 2. 4. 6.]
We can think of the scalar b being stretched during the arithmetic operation into an array with the same shape as a. The new elements in b as shown in above figure are simply copies of the original scalar. Although the stretching analogy is only conceptual. Numpy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible. Because Example 1 moves less memory (b is a scalar not an array) around during the multiplication it is about 10% faster than Example 2 using the standard numpy on Windows 2000 with one million element arrays! The figure below makes the concept more clear: In above example the scalar b is stretched to become an array of with the same shape as a so the shapes are compatible for element-by-element multiplication. Now let us see an example where both arrays get stretched. Python
In sommige gevallen worden bij het uitzenden beide arrays uitgerekt om een uitvoerarray te vormen die groter is dan een van de initiële arrays.
Werken met datetime:
Numpy has core array data types which natively support datetime functionality. The data type is called datetime64 so named because datetime is already taken by the datetime library included in Python. Consider the example below for some examples: Python
importnumpyasnp# creating a datetoday=np.datetime64('2017-02-12')print('Date is:'today)print('Year is:'np.datetime64(today'Y'))# creating array of dates in a monthdates=np.arange('2017-02''2017-03'dtype='datetime64[D]')print('nDates of February 2017:n'dates)print('Today is February:'todayindates)# arithmetic operation on datesdur=np.datetime64('2017-05-22')-np.datetime64('2016-05-22')print('nNo. of days:'dur)print('No. of weeks:'np.timedelta64(dur'W'))# sorting datesa=np.array(['2017-02-12''2016-10-13''2019-05-22']dtype='datetime64')print('nDates in sorted order:'np.sort(a))
Output:
Date is: 2017-02-12 Year is: 2017 Dates of February 2017: ['2017-02-01' '2017-02-02' '2017-02-03' '2017-02-04' '2017-02-05' '2017-02-06' '2017-02-07' '2017-02-08' '2017-02-09' '2017-02-10' '2017-02-11' '2017-02-12' '2017-02-13' '2017-02-14' '2017-02-15' '2017-02-16' '2017-02-17' '2017-02-18' '2017-02-19' '2017-02-20' '2017-02-21' '2017-02-22' '2017-02-23' '2017-02-24' '2017-02-25' '2017-02-26' '2017-02-27' '2017-02-28'] Today is February: True No. of days: 365 days No. of weeks: 52 weeks Dates in sorted order: ['2016-10-13' '2017-02-12' '2019-05-22']
Lineaire algebra in NumPy:
De Lineaire Algebra-module van NumPy biedt verschillende methoden om lineaire algebra op elke numpy-array toe te passen. U kunt vinden:
rangbepalende tracering etc. van een array.
eigen values of matrices
matrix- en vectorproducten (punt binnenste buitenenz. product) matrixmachtsverheffing
los lineaire of tensorvergelijkingen op en nog veel meer!
Consider the example below which explains how we can use NumPy to do some matrix operations. Python
importnumpyasnpA=np.array([[611][4-25][287]])print('Rank of A:'np.linalg.matrix_rank(A))print('nTrace of A:'np.trace(A))print('nDeterminant of A:'np.linalg.det(A))print('nInverse of A:n'np.linalg.inv(A))print('nMatrix A raised to power 3:n'np.linalg.matrix_power(A3))
Output:
Rank of A: 3 Trace of A: 11 Determinant of A: -306.0 Inverse of A: [[ 0.17647059 -0.00326797 -0.02287582] [ 0.05882353 -0.13071895 0.08496732] [-0.11764706 0.1503268 0.05228758]] Matrix A raised to power 3: [[336 162 228] [406 162 469] [698 702 905]]
Let us assume that we want to solve this linear equation set:
x + 2*y = 8 3*x + 4*y = 18
This problem can be solved using linalg.solve method as shown in example below: Python
importnumpyasnp# coefficientsa=np.array([[12][34]])# constantsb=np.array([818])print('Solution of linear equations:'np.linalg.solve(ab))
Output:
Solution of linear equations: [ 2. 3.]
Finally we see an example which shows how one can perform linear regression using least squares method. A linear regression line is of the form w1 x + w 2 = y en het is de lijn die de som van de kwadraten van de afstand van elk gegevenspunt tot de lijn minimaliseert. Dus gegeven n gegevensparen (xi yi) zijn de parameters waarnaar we op zoek zijn w1 en w2, die de fout minimaliseren: Let us have a look at the example below: Python
importnumpyasnpimportmatplotlib.pyplotasplt# x co-ordinatesx=np.arange(09)A=np.array([xnp.ones(9)])# linearly generated sequencey=[192020.521.522232325.524]# obtaining the parameters of regression linew=np.linalg.lstsq(A.Ty)[0]# plotting the lineline=w[0]*x+w[1]# regression lineplt.plot(xline'r-')plt.plot(xy'o')plt.show()
Output: Dit leidt dus tot de conclusie van deze serie NumPy-tutorials. NumPy is een veelgebruikte bibliotheek voor algemeen gebruik die de kern vormt van vele andere rekenbibliotheken zoals scipy scikit-learn tensorflow matplotlib opencv etc. Een basiskennis van NumPy helpt bij het efficiënt omgaan met andere bibliotheken op een hoger niveau! Referenties: