Gegeven een 2D binaire matrix samen met[][] waar sommige cellen hindernissen zijn (aangeduid met0) en de rest zijn vrije cellen (aangeduid met1) Het is jouw taak om de lengte van de langst mogelijke route vanaf een broncel te vinden (xs ys) naar een bestemmingscel (xd yd) .
- Je mag alleen naar aangrenzende cellen bewegen (omhoog, omlaag, links, rechts).
- Diagonale bewegingen zijn niet toegestaan.
- Een cel die eenmaal in een pad is bezocht, kan niet opnieuw in datzelfde pad worden bezocht.
- Als het onmogelijk is om de bestemming te bereiken, keer dan terug
-1.
Voorbeelden:
Invoer: xs = 0 ys = 0 xd = 1 yd = 7
met[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Uitgang: 24
Uitleg:
Invoer: xs = 0 ys = 3 xd = 2 yd = 2
met[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Uitgang: -1
Uitleg:
We kunnen zien dat dit onmogelijk is
bereik de cel (22) vanaf (03).
Inhoudsopgave
- [Aanpak] Backtracking gebruiken met bezochte matrix
- [Geoptimaliseerde aanpak] Zonder extra ruimte te gebruiken
[Aanpak] Backtracking gebruiken met bezochte matrix
CPPHet idee is om te gebruiken Terugkeren . We vertrekken vanuit de broncel van de matrix en gaan vooruit in alle vier de toegestane richtingen en controleren recursief of deze tot de oplossing leiden of niet. Als de bestemming wordt gevonden, werken we de waarde van het langste pad bij. Als geen van de bovenstaande oplossingen werkt, retourneren we false uit onze functie.
f-snaar python
#include #include #include #include using namespace std; // Function to find the longest path using backtracking int dfs(vector<vector<int>> &mat vector<vector<bool>> &visited int i int j int x int y) { int m = mat.size(); int n = mat[0].size(); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) { return -1; } // Mark current cell as visited visited[i][j] = true; int maxPath = -1; // Four possible moves: up down left right int row[] = {-1 1 0 0}; int col[] = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) { int m = mat.size(); int n = mat[0].size(); // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } vector<vector<bool>> visited(m vector<bool>(n false)); return dfs(mat visited xs ys xd yd); } int main() { vector<vector<int>> mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) cout << result << endl; else cout << -1 << endl; return 0; }
Java import java.util.Arrays; public class GFG { // Function to find the longest path using backtracking public static int dfs(int[][] mat boolean[][] visited int i int j int x int y) { int m = mat.length; int n = mat[0].length; // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) { return -1; // Invalid path } // Mark current cell as visited visited[i][j] = true; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } public static int findLongestPath(int[][] mat int xs int ys int xd int yd) { int m = mat.length; int n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } boolean[][] visited = new boolean[m][n]; return dfs(mat visited xs ys xd yd); } public static void main(String[] args) { int[][] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) System.out.println(result); else System.out.println(-1); } }
Python # Function to find the longest path using backtracking def dfs(mat visited i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid blocked or already visited if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0 or visited[i][j]: return -1 # Invalid path # Mark current cell as visited visited[i][j] = True maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat visited ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - unmark current cell visited[i][j] = False return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 visited = [[False for _ in range(n)] for _ in range(m)] return dfs(mat visited xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main()
C# using System; class GFG { // Function to find the longest path using backtracking static int dfs(int[] mat bool[] visited int i int j int x int y) { int m = mat.GetLength(0); int n = mat.GetLength(1); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0 || visited[i j]) { return -1; // Invalid path } // Mark current cell as visited visited[i j] = true; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.Max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i j] = false; return maxPath; } static int FindLongestPath(int[] mat int xs int ys int xd int yd) { int m = mat.GetLength(0); int n = mat.GetLength(1); // Check if source or destination is blocked if (mat[xs ys] == 0 || mat[xd yd] == 0) { return -1; } bool[] visited = new bool[m n]; return dfs(mat visited xs ys xd yd); } static void Main() { int[] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = FindLongestPath(mat xs ys xd yd); if (result != -1) Console.WriteLine(result); else Console.WriteLine(-1); } }
JavaScript // Function to find the longest path using backtracking function dfs(mat visited i j x y) { const m = mat.length; const n = mat[0].length; // If destination is reached if (i === x && j === y) { return 0; } // If cell is invalid blocked or already visited if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0 || visited[i][j]) { return -1; } // Mark current cell as visited visited[i][j] = true; let maxPath = -1; // Four possible moves: up down left right const row = [-1 1 0 0]; const col = [0 0 -1 1]; for (let k = 0; k < 4; k++) { const ni = i + row[k]; const nj = j + col[k]; const pathLength = dfs(mat visited ni nj x y); // If a valid path is found from this direction if (pathLength !== -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - unmark current cell visited[i][j] = false; return maxPath; } function findLongestPath(mat xs ys xd yd) { const m = mat.length; const n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] === 0 || mat[xd][yd] === 0) { return -1; } const visited = Array(m).fill().map(() => Array(n).fill(false)); return dfs(mat visited xs ys xd yd); } const mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ]; const xs = 0 ys = 0; const xd = 1 yd = 7; const result = findLongestPath(mat xs ys xd yd); if (result !== -1) console.log(result); else console.log(-1);
Uitvoer
24
Tijdcomplexiteit: O(4^(m*n)) Voor elke cel in de m x n-matrix onderzoekt het algoritme maximaal vier mogelijke richtingen (omhoog, omlaag, links, rechts), wat leidt tot een exponentieel aantal paden. In het ergste geval worden alle mogelijke paden onderzocht, wat resulteert in een tijdscomplexiteit van 4^(m*n).
Hulpruimte: O(m*n) Het algoritme gebruikt een m x n bezochte matrix om bezochte cellen te volgen en een recursiestapel die in het ergste geval kan groeien tot een diepte van m * n (bijvoorbeeld bij het verkennen van een pad dat alle cellen bestrijkt). De hulpruimte is dus O(m*n).
[Geoptimaliseerde aanpak] Zonder extra ruimte te gebruiken
In plaats van een aparte bezochte matrix bij te houden, kunnen we dat wel doen hergebruik de invoermatrix om bezochte cellen tijdens de doortocht te markeren. Dit bespaart extra ruimte en zorgt er nog steeds voor dat we dezelfde cel in een pad niet opnieuw bezoeken.
Hieronder vindt u de stapsgewijze aanpak:
- Begin vanaf de broncel
(xs ys). - Onderzoek bij elke stap alle vier mogelijke richtingen (rechts naar beneden, links naar boven).
- Voor elke geldige zet:
- Controleer grenzen en zorg ervoor dat de cel waarde heeft
1(vrije cel). - Markeer de cel als bezocht door deze tijdelijk in te stellen op
0. - Ga terug naar de volgende cel en verhoog de padlengte.
- Controleer grenzen en zorg ervoor dat de cel waarde heeft
- Als de bestemmingscel
(xd yd)wordt bereikt, vergelijkt u de huidige padlengte met de maximale lengte tot nu toe en werkt u het antwoord bij. - Backtrack: herstel de oorspronkelijke waarde van de cel (
1) voordat je terugkeert, zodat andere paden het kunnen verkennen. - Ga door met verkennen totdat alle mogelijke paden zijn bezocht.
- Retourneert de maximale padlengte. Als de bestemming onbereikbaar is, keer dan terug
-1
#include #include #include #include using namespace std; // Function to find the longest path using backtracking without extra space int dfs(vector<vector<int>> &mat int i int j int x int y) { int m = mat.size(); int n = mat[0].size(); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; int maxPath = -1; // Four possible moves: up down left right int row[] = {-1 1 0 0}; int col[] = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) { int m = mat.size(); int n = mat[0].size(); // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } int main() { vector<vector<int>> mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) cout << result << endl; else cout << -1 << endl; return 0; }
Java public class GFG { // Function to find the longest path using backtracking without extra space public static int dfs(int[][] mat int i int j int x int y) { int m = mat.length; int n = mat[0].length; // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } public static int findLongestPath(int[][] mat int xs int ys int xd int yd) { int m = mat.length; int n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] == 0 || mat[xd][yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } public static void main(String[] args) { int[][] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = findLongestPath(mat xs ys xd yd); if (result != -1) System.out.println(result); else System.out.println(-1); } }
Python # Function to find the longest path using backtracking without extra space def dfs(mat i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid or blocked (0 means blocked or visited) if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0: return -1 # Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0 maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - restore the cell's original value (1) mat[i][j] = 1 return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 return dfs(mat xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main()
C# using System; class GFG { // Function to find the longest path using backtracking without extra space static int dfs(int[] mat int i int j int x int y) { int m = mat.GetLength(0); int n = mat.GetLength(1); // If destination is reached if (i == x && j == y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i j] = 0; int maxPath = -1; // Four possible moves: up down left right int[] row = {-1 1 0 0}; int[] col = {0 0 -1 1}; for (int k = 0; k < 4; k++) { int ni = i + row[k]; int nj = j + col[k]; int pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength != -1) { maxPath = Math.Max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i j] = 1; return maxPath; } static int FindLongestPath(int[] mat int xs int ys int xd int yd) { // Check if source or destination is blocked if (mat[xs ys] == 0 || mat[xd yd] == 0) { return -1; } return dfs(mat xs ys xd yd); } static void Main() { int[] mat = { {1 1 1 1 1 1 1 1 1 1} {1 1 0 1 1 0 1 1 0 1} {1 1 1 1 1 1 1 1 1 1} }; int xs = 0 ys = 0; int xd = 1 yd = 7; int result = FindLongestPath(mat xs ys xd yd); if (result != -1) Console.WriteLine(result); else Console.WriteLine(-1); } }
JavaScript // Function to find the longest path using backtracking without extra space function dfs(mat i j x y) { const m = mat.length; const n = mat[0].length; // If destination is reached if (i === x && j === y) { return 0; } // If cell is invalid or blocked (0 means blocked or visited) if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0) { return -1; } // Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0; let maxPath = -1; // Four possible moves: up down left right const row = [-1 1 0 0]; const col = [0 0 -1 1]; for (let k = 0; k < 4; k++) { const ni = i + row[k]; const nj = j + col[k]; const pathLength = dfs(mat ni nj x y); // If a valid path is found from this direction if (pathLength !== -1) { maxPath = Math.max(maxPath 1 + pathLength); } } // Backtrack - restore the cell's original value (1) mat[i][j] = 1; return maxPath; } function findLongestPath(mat xs ys xd yd) { const m = mat.length; const n = mat[0].length; // Check if source or destination is blocked if (mat[xs][ys] === 0 || mat[xd][yd] === 0) { return -1; } return dfs(mat xs ys xd yd); } const mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ]; const xs = 0 ys = 0; const xd = 1 yd = 7; const result = findLongestPath(mat xs ys xd yd); if (result !== -1) console.log(result); else console.log(-1);
Uitvoer
24
Tijdcomplexiteit: O(4^(m*n))Het algoritme onderzoekt nog steeds maximaal vier richtingen per cel in de m x n-matrix, wat resulteert in een exponentieel aantal paden. De wijziging ter plaatse heeft geen invloed op het aantal onderzochte paden, dus de tijdscomplexiteit blijft 4^(m*n).
Hulpruimte: O(m*n) Hoewel de bezochte matrix wordt geƫlimineerd door de invoermatrix ter plaatse te wijzigen, heeft de recursiestapel nog steeds O(m*n)-ruimte nodig, omdat de maximale recursiediepte in het ergste geval m * n kan zijn (bijvoorbeeld een pad dat alle cellen in een raster bezoekt met voornamelijk 1s).