Gegeven een reeks van drie binaire reeksen AB en C van N bits. Tel de minimale bits die nodig zijn om A en B om te draaien, zodat XOR van A en B gelijk is aan C. For Voorbeeld :
Input: N = 3 A = 110 B = 101 C = 001 Output: 1 We only need to flip the bit of 2nd position of either A or B such that A ^ B = C i.e. 100 ^ 101 = 001
A Naïeve aanpak is om alle mogelijke combinaties van bits in A en B te genereren en ze vervolgens te XORen om te controleren of deze gelijk is aan C of niet. Tijdcomplexiteit van deze aanpak groeit exponentieel, dus het zou niet beter zijn voor een grote waarde van N.
Een andere aanpak is om het concept van XOR te gebruiken.
XOR Truth Table Input Output X Y Z 0 0 - 0 0 1 - 1 1 0 - 1 1 1 - 0
Als we generaliseren, zullen we ontdekken dat we op elke positie van A en B alleen maar i hoeven om te draaiene(0 tot N-1) positie van A of B, anders kunnen we het minimumaantal bits niet bereiken.
Dus op elke positie van i (0 tot N-1) zul je twee soorten situaties tegenkomen, namelijk A[i] == B[i] of A[i] != B[i]. Laten we het één voor één bespreken.
-
Als A[i] == B[i] dan zal XOR van deze bits 0 zijn. Er doen zich twee gevallen voor in C[]: C[i]==0 of C[i]==1.
Als C[i] == 0 dan is het niet nodig om de bit om te draaien, maar als C[i] == 1 dan moeten we de bit omdraaien in A[i] of B[i] zodat 1^0 == 1 of 0^1 == 1.
-
Als A[i] != B[i] dan geeft XOR van deze Bits een 1. In C doen zich opnieuw twee gevallen voor, namelijk C[i] == 0 of C[i] == 1.
Dus als C[i] == 1 dan hoeven we de bit niet om te draaien, maar als C[i] == 0 dan moeten we de bit omdraaien in A[i] of B[i] zodat 0^0==0 of 1^1==0
// C++ code to count the Minimum bits in A and B #include using namespace std; int totalFlips(char *A char *B char *C int N) { int count = 0; for (int i=0; i < N; ++i) { // If both A[i] and B[i] are equal if (A[i] == B[i] && C[i] == '1') ++count; // If Both A and B are unequal else if (A[i] != B[i] && C[i] == '0') ++count; } return count; } //Driver Code int main() { //N represent total count of Bits int N = 5; char a[] = '10100'; char b[] = '00010'; char c[] = '10011'; cout << totalFlips(a b c N); return 0; }
Java // Java code to count the Minimum bits in A and B class GFG { static int totalFlips(String A String B String C int N) { int count = 0; for (int i = 0; i < N; ++i) { // If both A[i] and B[i] are equal if (A.charAt(i) == B.charAt(i) && C.charAt(i) == '1') ++count; // If Both A and B are unequal else if (A.charAt(i) != B.charAt(i) && C.charAt(i) == '0') ++count; } return count; } //driver code public static void main (String[] args) { //N represent total count of Bits int N = 5; String a = '10100'; String b = '00010'; String c = '10011'; System.out.print(totalFlips(a b c N)); } } // This code is contributed by Anant Agarwal.
Python3 # Python code to find minimum bits to be flip def totalFlips(A B C N): count = 0 for i in range(N): # If both A[i] and B[i] are equal if A[i] == B[i] and C[i] == '1': count=count+1 # if A[i] and B[i] are unequal else if A[i] != B[i] and C[i] == '0': count=count+1 return count # Driver Code # N represent total count of Bits N = 5 a = '10100' b = '00010' c = '10011' print(totalFlips(a b c N))
C# // C# code to count the Minimum // bits flip in A and B using System; class GFG { static int totalFlips(string A string B string C int N) { int count = 0; for (int i = 0; i < N; ++i) { // If both A[i] and B[i] are equal if (A[i] == B[i] && C[i] == '1') ++count; // If Both A and B are unequal else if (A[i] != B[i] && C[i] == '0') ++count; } return count; } // Driver code public static void Main() { // N represent total count of Bits int N = 5; string a = '10100'; string b = '00010'; string c = '10011'; Console.Write(totalFlips(a b c N)); } } // This code is contributed by Anant Agarwal.
PHP // PHP code to count the // Minimum bits in A and B function totalFlips($A $B $C $N) { $count = 0; for ($i = 0; $i < $N; ++$i) { // If both A[i] and // B[i] are equal if ($A[$i] == $B[$i] && $C[$i] == '1') ++$count; // If Both A and // B are unequal else if ($A[$i] != $B[$i] && $C[$i] == '0') ++$count; } return $count; } // Driver Code // N represent total count of Bits $N = 5; $a = '10100'; $b = '00010'; $c = '10011'; echo totalFlips($a $b $c $N); // This code is contributed by nitin mittal. ?> JavaScript <script> // Javascript code to count the Minimum bits in A and B function totalFlips(A B C N) { let count = 0; for (let i = 0; i < N; ++i) { // If both A[i] and B[i] are equal if (A[i] == B[i] && C[i] == '1') ++count; // If Both A and B are unequal else if (A[i] != B[i] && C[i] == '0') ++count; } return count; } // Driver Code // N represent total count of Bits let N = 5; let a = '10100'; let b = '00010'; let c = '10011'; document.write(totalFlips(a b c N)); </script>
Uitvoer
2
Tijdcomplexiteit: OP)
Hulpruimte: O(1)
Efficiënte aanpak:
Deze benadering volgt de tijdcomplexiteit van O(log N).
C++// C++ code to count the Minimum bits in A and B #include using namespace std; int totalFlips(string A string B string C int N) { int INTSIZE = 31; int ans = 0; int i = 0; while (N > 0) { // Considering only 31 bits int a = stoi(A.substr(i * INTSIZE min(INTSIZE N)) 0 2); int b = stoi(B.substr(i * INTSIZE min(INTSIZE N)) 0 2); int c = stoi(C.substr(i * INTSIZE min(INTSIZE N)) 0 2); int Z = a ^ b ^ c; // builtin function for // counting the number of set bits. ans += __builtin_popcount(Z); i++; N -= 32; } return ans; } // Driver Code int main() { // N represent total count of Bits int N = 5; char a[] = '10100'; char b[] = '00010'; char c[] = '10011'; cout << totalFlips(a b c N); return 0; } // This code is contributed by Kasina Dheeraj.
Java // Java code to count the Minimum bits in A and B class GFG { static int totalFlips(String A String B String C int N) { int INTSIZE = 31; int ans = 0; int i = 0; while (N > 0) { // Considering only 31 bits int a = Integer.parseInt( A.substring(i * INTSIZE i * INTSIZE + Math.min(INTSIZE N)) 2); int b = Integer.parseInt( B.substring(i * INTSIZE i * INTSIZE + Math.min(INTSIZE N)) 2); int c = Integer.parseInt( C.substring(i * INTSIZE i * INTSIZE + Math.min(INTSIZE N)) 2); int Z = a ^ b ^ c; // builtin function for // counting the number of set bits. ans += Integer.bitCount(Z); i++; N -= 32; } return ans; } // driver code public static void main(String[] args) { // N represent total count of Bits int N = 5; String a = '10100'; String b = '00010'; String c = '10011'; System.out.print(totalFlips(a b c N)); } } // This code is contributed by Kasina Dheeraj.
Python3 def totalFlips(A B C N): INTSIZE = 31 ans = 0 i = 0 while N > 0: # Considering only 31 bits a = int(A[i * INTSIZE: min(INTSIZE + i * INTSIZE N)] 2) b = int(B[i * INTSIZE: min(INTSIZE + i * INTSIZE N)] 2) c = int(C[i * INTSIZE: min(INTSIZE + i * INTSIZE N)] 2) Z = a ^ b ^ c # builtin function for counting the number of set bits. ans += bin(Z).count('1') i += 1 N -= 32 return ans # Driver Code if __name__ == '__main__': # N represent total count of Bits N = 5 a = '10100' b = '00010' c = '10011' print(totalFlips(a b c N))
C# using System; class Program { static int TotalFlips(string A string B string C int N) { int INTSIZE = 31; int ans = 0; int i = 0; while (N > 0) { // Considering only 31 bits int a = Convert.ToInt32( A.Substring(i * INTSIZE Math.Min(INTSIZE N)) 2); int b = Convert.ToInt32( B.Substring(i * INTSIZE Math.Min(INTSIZE N)) 2); int c = Convert.ToInt32( C.Substring(i * INTSIZE Math.Min(INTSIZE N)) 2); int Z = a ^ b ^ c; // builtin function for // counting the number of set bits. ans += BitCount(Z); i++; N -= 32; } return ans; } static int BitCount(int i) { i = i - ((i >> 1) & 0x55555555); i = (i & 0x33333333) + ((i >> 2) & 0x33333333); return (((i + (i >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24; } static void Main(string[] args) { // N represent total count of Bits int N = 5; string a = '10100'; string b = '00010'; string c = '10011'; Console.WriteLine(TotalFlips(a b c N)); } }
JavaScript function TotalFlips(A B C N) { let INTSIZE = 31; let ans = 0; let i = 0; while (N > 0) { // Considering only 31 bits let a = parseInt(A.substring(i * INTSIZE Math.min(INTSIZE + i * INTSIZE N)) 2); let b = parseInt(B.substring(i * INTSIZE Math.min(INTSIZE + i * INTSIZE N)) 2); let c = parseInt(C.substring(i * INTSIZE Math.min(INTSIZE + i * INTSIZE N)) 2); let Z = a ^ b ^ c; // builtin function for // counting the number of set bits. ans += Z.toString(2).split('1').length - 1; i++; N -= 32; } return ans; } // Driver Code let N = 5; let a = '10100'; let b = '00010'; let c = '10011'; console.log(TotalFlips(a b c N));
Uitvoer
2
Waarom werkt deze code?
We zien dat bit moet worden omgedraaid als A[i]^B[i] !=C[i]. We kunnen dus het aantal flips verkrijgen door het aantal ingestelde bits in a^b^c te berekenen, waarbij abc gehele representaties zijn van een binaire reeks. Maar de tekenreekslengte kan groter zijn dan de 32-grootte van een typisch int-type. Het plan is dus om de string te verdelen in substrings met een lengte van 31, bewerkingen uit te voeren en de ingestelde bits te tellen, zoals vermeld voor elke substring.
Tijdcomplexiteit: O(log N) terwijl de while-lus voor log wordt uitgevoerd31N keer en tellende setbits zijn verantwoordelijk voor maximaal O(32) voor 32-bits en O(64) voor 64-bits en voor elke substringbewerking O(31).
Ruimtecomplexiteit: O(1) Opgemerkt moet worden dat substringbewerking O(32)-ruimte nodig heeft.
'