logo

Binaire representatie van het volgende grotere getal met hetzelfde aantal 1-en en 0-en

Gegeven een binaire invoer die de binaire representatie van positief getal n vertegenwoordigt, zoek dan de binaire representatie van het kleinste getal groter dan n met hetzelfde aantal enen en nullen als in de binaire representatie van n. Als een dergelijk getal niet kan worden gevormd, drukt u 'geen groter getal' af.
De binaire invoer kan wel en niet passen, zelfs niet in een niet-ondertekende long long int.

Voorbeelden: 

Input : 10010  
Output : 10100
Here n = (18)10 = (10010)2
next greater = (20)10 = (10100)2
Binary representation of 20 contains same number of
1's and 0's as in 18 .
Input : 111000011100111110
Output : 111000011101001111

Dit probleem komt simpelweg neer op het vinden van de volgende permutatie van een gegeven string. Wij kunnen de volgende_permutatie() van het ingevoerde binaire getal. 



Hieronder staat een algoritme om de volgende permutatie in een binaire reeks te vinden.  

  1. Doorloop de binaire string bstr vanaf rechts.
  2. Zoek tijdens het doorlopen de eerste index i zodanig dat bstr[i] = '0' en bstr[i+1] = '1'.
  3. Wisselkarakter uit bij index 'i' en 'i+1'.
  4. Omdat we de kleinste volgende waarde nodig hebben, moet u rekening houden met de subtekenreeks uit de index ik+2 om alles te beëindigen en te verplaatsen 1-en in de substring op het einde.

Hieronder vindt u de implementatie van bovenstaande stappen. 

C++
// C++ program to find next permutation in a // binary string. #include    using namespace std; // Function to find the next greater number // with same number of 1's and 0's string nextGreaterWithSameDigits(string bnum) {  int l = bnum.size();  int i;  for (int i=l-2; i>=1; i--)  {  // locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum.at(i) == '0' &&  bnum.at(i+1) == '1')  {  char ch = bnum.at(i);  bnum.at(i) = bnum.at(i+1);  bnum.at(i+1) = ch;  break;  }  }  // if no swapping performed  if (i == 0)  'no greater number';  // Since we want the smallest next value  // shift all 1's at the end in the binary  // substring starting from index 'i+2'  int j = i+2 k = l-1;  while (j < k)  {  if (bnum.at(j) == '1' && bnum.at(k) == '0')  {  char ch = bnum.at(j);  bnum.at(j) = bnum.at(k);  bnum.at(k) = ch;  j++;  k--;  }  // special case while swapping if '0'  // occurs then break  else if (bnum.at(i) == '0')  break;  else  j++;  }  // required next greater number  return bnum; } // Driver program to test above int main() {  string bnum = '10010';  cout << 'Binary representation of next greater number = '  << nextGreaterWithSameDigits(bnum);  return 0; } 
Java
// Java program to find next permutation in a // binary string. class GFG  { // Function to find the next greater number // with same number of 1's and 0's static String nextGreaterWithSameDigits(char[] bnum) {  int l = bnum.length;  int i;  for (i = l - 2; i >= 1; i--)  {  // locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum[i] == '0' &&  bnum[i+1] == '1')  {  char ch = bnum[i];  bnum[i] = bnum[i+1];  bnum[i+1] = ch;  break;  }  }  // if no swapping performed  if (i == 0)  System.out.println('no greater number');  // Since we want the smallest next value  // shift all 1's at the end in the binary  // substring starting from index 'i+2'  int j = i + 2 k = l - 1;  while (j < k)  {  if (bnum[j] == '1' && bnum[k] == '0')  {  char ch = bnum[j];  bnum[j] = bnum[k];  bnum[k] = ch;  j++;  k--;  }  // special case while swapping if '0'  // occurs then break  else if (bnum[i] == '0')  break;  else  j++;  }  // required next greater number  return String.valueOf(bnum); } // Driver program to test above public static void main(String[] args) {  char[] bnum = '10010'.toCharArray();  System.out.println('Binary representation of next greater number = '  + nextGreaterWithSameDigits(bnum)); } } // This code contributed by Rajput-Ji 
Python3
# Python3 program to find next permutation in a # binary string. # Function to find the next greater number # with same number of 1's and 0's def nextGreaterWithSameDigits(bnum): l = len(bnum) bnum = list(bnum) for i in range(l - 2 0 -1): # locate first 'i' from end such that # bnum[i]=='0' and bnum[i+1]=='1' # swap these value and break if (bnum[i] == '0' and bnum[i + 1] == '1'): ch = bnum[i] bnum[i] = bnum[i + 1] bnum[i + 1] = ch break # if no swapping performed if (i == 0): return 'no greater number' # Since we want the smallest next value # shift all 1's at the end in the binary # substring starting from index 'i+2' j = i + 2 k = l - 1 while (j < k): if (bnum[j] == '1' and bnum[k] == '0'): ch = bnum[j] bnum[j] = bnum[k] bnum[k] = ch j += 1 k -= 1 # special case while swapping if '0' # occurs then break else if (bnum[i] == '0'): break else: j += 1 # required next greater number return bnum # Driver code bnum = '10010' print('Binary representation of next greater number = '*nextGreaterWithSameDigits(bnum)sep='') # This code is contributed by shubhamsingh10 
C#
// C# program to find next permutation in a // binary string. using System; class GFG  { // Function to find the next greater number // with same number of 1's and 0's static String nextGreaterWithSameDigits(char[] bnum) {  int l = bnum.Length;  int i;  for (i = l - 2; i >= 1; i--)  {  // locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum[i] == '0' &&  bnum[i+1] == '1')  {  char ch = bnum[i];  bnum[i] = bnum[i+1];  bnum[i+1] = ch;  break;  }  }  // if no swapping performed  if (i == 0)  Console.WriteLine('no greater number');  // Since we want the smallest next value  // shift all 1's at the end in the binary  // substring starting from index 'i+2'  int j = i + 2 k = l - 1;  while (j < k)  {  if (bnum[j] == '1' && bnum[k] == '0')  {  char ch = bnum[j];  bnum[j] = bnum[k];  bnum[k] = ch;  j++;  k--;  }  // special case while swapping if '0'  // occurs then break  else if (bnum[i] == '0')  break;  else  j++;  }  // required next greater number  return String.Join(''bnum); } // Driver code public static void Main(String[] args) {  char[] bnum = '10010'.ToCharArray();  Console.WriteLine('Binary representation of next greater number = '  + nextGreaterWithSameDigits(bnum)); } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // Javascript program to find next permutation // in a binary string. // Function to find the next greater number // with same number of 1's and 0's function nextGreaterWithSameDigits(bnum) {  let l = bnum.length;  let i;    for(i = l - 2; i >= 1; i--)  {    // Locate first 'i' from end such that  // bnum[i]=='0' and bnum[i+1]=='1'  // swap these value and break;  if (bnum[i] == '0' &&  bnum[i + 1] == '1')  {  let ch = bnum[i];  bnum[i] = bnum[i+1];  bnum[i+1] = ch;  break;  }  }    // If no swapping performed  if (i == 0)  document.write('no greater number  
'
); // Since we want the smallest next value // shift all 1's at the end in the binary // substring starting from index 'i+2' let j = i + 2 k = l - 1; while (j < k) { if (bnum[j] == '1' && bnum[k] == '0') { let ch = bnum[j]; bnum[j] = bnum[k]; bnum[k] = ch; j++; k--; } // Special case while swapping if '0' // occurs then break else if (bnum[i] == '0') break; else j++; } // Required next greater number return (bnum).join(''); } // Driver code let bnum = '10010'.split(''); document.write('Binary representation of next ' + 'greater number = ' + nextGreaterWithSameDigits(bnum)); // This code is contributed by rag2127 </script>

Uitvoer
Binary representation of next greater number = 10100

Tijdcomplexiteit: O(n) waarbij n het aantal bits in invoer is.
Hulpruimte: O(1)

 

Benadering 2:

Hier is de aanpak om het volgende grotere getal te vinden met hetzelfde aantal enen en nullen in een binaire reeks:

  1. Zoek de meest rechtse niet-achterliggende (RT1) in de string. Laat de index i zijn.
  2. Als er geen RT1 is, is de gegeven binaire string al de grootst mogelijke binaire string met hetzelfde aantal enen en nullen. Retourneer 'geen groter getal'.
  3. Zoek de meest rechtse nul rechts van i (laat de index j zijn) en verwissel deze met de RT1.
  4. Sorteer de subtekenreeks rechts van j in oplopende volgorde.
  5. Retourneert de resulterende tekenreeks.

Hier is de gecorrigeerde C++- en Java-code voor deze aanpak:

C++
#include    using namespace std; // Function to find the next greater number // with same number of 1's and 0's string nextGreaterWithSameDigits(string bnum) {  int l = bnum.size();  int i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum[i] == '0') {  i--;  }  if (i < 0) {  return 'no greater number';  }  // Find the rightmost zero to the right of i  int j = i - 1;  while (j >= 0 && bnum[j] == '1') {  j--;  }  if (j < 0) {  return 'no greater number';  }  // Swap the RT1 with the rightmost zero to the right of i  swap(bnum[i] bnum[j]);  // Sort the substring to the right of j in ascending order  sort(bnum.begin() + j + 1 bnum.end());  // Required next greater number  return bnum; } // Driver program to test above int main() {  string bnum = '10010';  cout << 'Binary representation of next greater number = '  << nextGreaterWithSameDigits(bnum);  return 0; } 
Java
import java.util.Arrays; public class GFG {  // Function to find the next greater number  // with the same number of 1's and 0's  public static String nextGreaterWithSameDigits(String bnum) {  int l = bnum.length();  int i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum.charAt(i) == '0') {  i--;  }  if (i < 0) {  return 'no greater number';  }  // Find the rightmost zero to the right of i  int j = i - 1;  while (j >= 0 && bnum.charAt(j) == '1') {  j--;  }  if (j < 0) {  return 'no greater number';  }  // Swap the RT1 with the rightmost zero to the right of i  char[] bnumArray = bnum.toCharArray();  char temp = bnumArray[i];  bnumArray[i] = bnumArray[j];  bnumArray[j] = temp;  // Sort the substring to the right of j in ascending order  Arrays.sort(bnumArray j + 1 l);  // Required next greater number  return new String(bnumArray);  }  // Driver program to test above  public static void main(String[] args) {  String bnum = '10010';  System.out.println('Binary representation of next greater number = ' +  nextGreaterWithSameDigits(bnum));  } } 
Python
# Function to find the next greater number # with the same number of 1's and 0's def next_greater_with_same_digits(bnum): l = len(bnum) i = l - 1 # Find the rightmost non-trailing one while i >= 0 and bnum[i] == '0': i -= 1 if i < 0: return 'no greater number' # Find the rightmost zero to the right of i j = i - 1 while j >= 0 and bnum[j] == '1': j -= 1 if j < 0: return 'no greater number' # Swap the rightmost one with the rightmost zero to the right of i bnum_list = list(bnum) bnum_list[i] bnum_list[j] = bnum_list[j] bnum_list[i] bnum = ''.join(bnum_list) # Sort the substring to the right of j in ascending order bnum = bnum[:j + 1] + ''.join(sorted(bnum[j + 1:])) # Required next greater number return bnum # Driver program to test the function if __name__ == '__main__': bnum = '10010' result = next_greater_with_same_digits(bnum) print('Binary representation of the next greater number =' result) 
C#
using System; namespace NextGreaterNumberWithSameDigits {  class GFG  {  // Function to find the next greater number  // with same number of 1's and 0's  static string NextGreaterWithSameDigits(string bnum)  {  int l = bnum.Length;  int i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum[i] == '0')  {  i--;  }  if (i < 0)  {  return 'no greater number';  }  // Find the rightmost zero to the right of i  int j = i - 1;  while (j >= 0 && bnum[j] == '1')  {  j--;  }  if (j < 0)  {  return 'no greater number';  }  // Swap the RT1 with the rightmost zero to the right of i  char[] bnumArray = bnum.ToCharArray();  char temp = bnumArray[i];  bnumArray[i] = bnumArray[j];  bnumArray[j] = temp;  // Sort the substring to the right of j in ascending order  Array.Sort(bnumArray j + 1 l - j - 1);  // Required next greater number  return new string(bnumArray);  }  // Driver program to test above  static void Main(string[] args)  {  string bnum = '10010';  Console.WriteLine('Binary representation of next greater number = ' + NextGreaterWithSameDigits(bnum));  }  } } 
JavaScript
function nextGreaterWithSameDigits(bnum) {  const l = bnum.length;  let i = l - 1;  // Find the rightmost non-trailing one  while (i >= 0 && bnum[i] === '0') {  i--;  }  if (i < 0) {  return 'no greater number';  }  // Find the rightmost zero to the right of i  let j = i - 1;  while (j >= 0 && bnum[j] === '1') {  j--;  }  if (j < 0) {  return 'no greater number';  }  // Convert string to array for swapping  bnum = bnum.split('');    // Swap the RT1 with the rightmost zero to the right of i  [bnum[i] bnum[j]] = [bnum[j] bnum[i]];  // Sort the substring to the right of j in ascending order  const sortedSubstring = bnum.slice(j + 1).sort().join('');  // Required next greater number  return bnum.slice(0 j + 1).join('') + sortedSubstring; } // Driver program to test above function main() {  const bnum = '10010';  console.log('Binary representation of next greater number =' nextGreaterWithSameDigits(bnum)); } main(); 

Uitvoer
Binary representation of next greater number = 10100

Tijdcomplexiteit : O(n + m log m) waarbij n de lengte is van de invoertekenreeks en m de lengte is van de subtekenreeks rechts van de verwisselde tekens.
Hulpruimte : Op)

Quiz maken