Boom sorteren is een sorteeralgoritme dat is gebaseerd op Binaire zoekboom gegevensstructuur. Het creëert eerst een binaire zoekboom op basis van de elementen van de invoerlijst of array en voert vervolgens een doorzoeking in volgorde uit op de gemaakte binaire zoekboom om de elementen in gesorteerde volgorde te krijgen.
Algoritme:
Stap 1: Neem de elementen die in een array worden ingevoerd.Stap 2: Maak een binaire zoekboom door gegevensitems uit de array in te voegen in de binaire zoekboom .Stap 3: Voer een doorgang in de juiste volgorde door de boom uit om de elementen in gesorteerde volgorde te krijgen.Toepassingen van Boomsoort:
- Het meest voorkomende gebruik is het online bewerken van de elementen: na elke installatie is een reeks tot nu toe geziene objecten beschikbaar in een gestructureerd programma.
 - Als u een splay-boom als binaire zoekboom gebruikt, heeft het resulterende algoritme (genaamd splaysort) de extra eigenschap dat het een adaptieve sortering is, wat betekent dat de werktijd ervan sneller is dan O (n log n) voor virtuele invoer.
 Hieronder vindt u de implementatie van de bovenstaande aanpak:
C++Java// C++ program to implement Tree Sort #includeusing namespace std; struct Node { int key; struct Node *left *right; }; // A utility function to create a new BST Node struct Node *newNode(int item) { struct Node *temp = new Node; temp->key = item; temp->left = temp->right = NULL; return temp; } // Stores inorder traversal of the BST // in arr[] void storeSorted(Node *root int arr[] int &i) { if (root != NULL) { storeSorted(root->left arr i); arr[i++] = root->key; storeSorted(root->right arr i); } } /* A utility function to insert a new Node with given key in BST */ Node* insert(Node* node int key) { /* If the tree is empty return a new Node */ if (node == NULL) return newNode(key); /* Otherwise recur down the tree */ if (key < node->key) node->left = insert(node->left key); else if (key > node->key) node->right = insert(node->right key); /* return the (unchanged) Node pointer */ return node; } // This function sorts arr[0..n-1] using Tree Sort void treeSort(int arr[] int n) { struct Node *root = NULL; // Construct the BST root = insert(root arr[0]); for (int i=1; i<n; i++) root = insert(root arr[i]); // Store inorder traversal of the BST // in arr[] int i = 0; storeSorted(root arr i); } // Driver Program to test above functions int main() { //create input array int arr[] = {5 4 7 2 11}; int n = sizeof(arr)/sizeof(arr[0]); treeSort(arr n); for (int i=0; i<n; i++) cout << arr[i] << ' '; return 0; } Python3// Java program to // implement Tree Sort class GFG { // Class containing left and // right child of current // node and key value class Node { int key; Node left right; public Node(int item) { key = item; left = right = null; } } // Root of BST Node root; // Constructor GFG() { root = null; } // This method mainly // calls insertRec() void insert(int key) { root = insertRec(root key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root int key) { /* If the tree is empty return a new node */ if (root == null) { root = new Node(key); return root; } /* Otherwise recur down the tree */ if (key < root.key) root.left = insertRec(root.left key); else if (key > root.key) root.right = insertRec(root.right key); /* return the root */ return root; } // A function to do // inorder traversal of BST void inorderRec(Node root) { if (root != null) { inorderRec(root.left); System.out.print(root.key + ' '); inorderRec(root.right); } } void treeins(int arr[]) { for(int i = 0; i < arr.length; i++) { insert(arr[i]); } } // Driver Code public static void main(String[] args) { GFG tree = new GFG(); int arr[] = {5 4 7 2 11}; tree.treeins(arr); tree.inorderRec(tree.root); } } // This code is contributed // by Vibin MC## Python3 program to # implement Tree Sort # Class containing left and # right child of current # node and key value class Node: def __init__(selfitem = 0): self.key = item self.leftself.right = NoneNone # Root of BST root = Node() root = None # This method mainly # calls insertRec() def insert(key): global root root = insertRec(root key) # A recursive function to # insert a new key in BST def insertRec(root key): # If the tree is empty # return a new node if (root == None): root = Node(key) return root # Otherwise recur # down the tree if (key < root.key): root.left = insertRec(root.left key) elif (key > root.key): root.right = insertRec(root.right key) # return the root return root # A function to do # inorder traversal of BST def inorderRec(root): if (root != None): inorderRec(root.left) print(root.key end = ' ') inorderRec(root.right) def treeins(arr): for i in range(len(arr)): insert(arr[i]) # Driver Code arr = [5 4 7 2 11] treeins(arr) inorderRec(root) # This code is contributed by shinjanpatraJavaScript// C# program to // implement Tree Sort using System; public class GFG { // Class containing left and // right child of current // node and key value public class Node { public int key; public Node left right; public Node(int item) { key = item; left = right = null; } } // Root of BST Node root; // Constructor GFG() { root = null; } // This method mainly // calls insertRec() void insert(int key) { root = insertRec(root key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root int key) { /* If the tree is empty return a new node */ if (root == null) { root = new Node(key); return root; } /* Otherwise recur down the tree */ if (key < root.key) root.left = insertRec(root.left key); else if (key > root.key) root.right = insertRec(root.right key); /* return the root */ return root; } // A function to do // inorder traversal of BST void inorderRec(Node root) { if (root != null) { inorderRec(root.left); Console.Write(root.key + ' '); inorderRec(root.right); } } void treeins(int []arr) { for(int i = 0; i < arr.Length; i++) { insert(arr[i]); } } // Driver Code public static void Main(String[] args) { GFG tree = new GFG(); int []arr = {5 4 7 2 11}; tree.treeins(arr); tree.inorderRec(tree.root); } } // This code is contributed by Rajput-Ji<script> // Javascript program to // implement Tree Sort // Class containing left and // right child of current // node and key value class Node { constructor(item) { this.key = item; this.left = this.right = null; } } // Root of BST let root = new Node(); root = null; // This method mainly // calls insertRec() function insert(key) { root = insertRec(root key); } /* A recursive function to insert a new key in BST */ function insertRec(root key) { /* If the tree is empty return a new node */ if (root == null) { root = new Node(key); return root; } /* Otherwise recur down the tree */ if (key < root.key) root.left = insertRec(root.left key); else if (key > root.key) root.right = insertRec(root.right key); /* return the root */ return root; } // A function to do // inorder traversal of BST function inorderRec(root) { if (root != null) { inorderRec(root.left); document.write(root.key + ' '); inorderRec(root.right); } } function treeins(arr) { for (let i = 0; i < arr.length; i++) { insert(arr[i]); } } // Driver Code let arr = [5 4 7 2 11]; treeins(arr); inorderRec(root); // This code is contributed // by Saurabh Jaiswal </script>
Uitvoer2 4 5 7 11Complexiteitsanalyse:
Gemiddelde complexiteit van de casustijd: O(n log n) Het toevoegen van één item aan een binaire zoekboom kost gemiddeld O(log n) tijd. Daarom kost het toevoegen van n items O(n log n) tijd
In het ergste geval tijdcomplexiteit: Op2). De tijdscomplexiteit van Tree Sort in het slechtste geval kan worden verbeterd door een zelfbalancerende binaire zoekboom zoals Red Black Tree AVL Tree te gebruiken. Met behulp van zelfbalancerende binaire boom Tree Sort zal in het ergste geval O(n log n) tijd nodig hebben om de array te sorteren.
Hulpruimte: Op)