logo

Som van het gemiddelde van alle subsets

Probeer het eens op GfG Practice ' title= #practiceLinkDiv {weergave: geen! belangrijk; }

Gegeven een array arr[] van N gehele elementen is het de taak om de som te vinden van het gemiddelde van alle subsets van deze array.

Java-opmerkingen

Voorbeeld:   

Input : arr[] = [2 3 5]  
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33
Recommended Practice Som van het gemiddelde van alle subsets Probeer het!

Naïeve aanpak: Een naïeve oplossing is om door alle mogelijke subsets te itereren en een gemiddeld van allemaal en voeg ze vervolgens één voor één toe, maar dit zal exponentiële tijd vergen en zal onhaalbaar zijn voor grotere arrays. 
We kunnen een patroon krijgen door een voorbeeld te nemen  



arr = [a0 a1 a2 a3]  
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

De coëfficiënt met tellers kan als volgt worden uitgelegd: stel dat we subsets met K-elementen herhalen, dan zal de noemer K zijn en de teller r*S, waarbij 'r' het aantal keren aangeeft dat een bepaald array-element zal worden toegevoegd tijdens het itereren over subsets van dezelfde grootte. Door inspectie kunnen we zien dat r nCr(N - 1 n - 1) zal zijn, omdat we na het plaatsen van één element in de sommatie (n – 1) elementen uit (N - 1) elementen moeten kiezen, zodat elk element een frequentie van nCr(N - 1 n - 1) zal hebben, terwijl we subsets van dezelfde grootte beschouwen als alle elementen een gelijk aantal keren aan de sommatie deelnemen. Dit zal ook de frequentie van S zijn en zal de teller zijn in de uiteindelijke uitdrukking. 

In de onderstaande code nCr wordt geïmplementeerd met behulp van een dynamische programmeermethode daar kun je hier meer over lezen 

C++
// C++ program to get sum of average of all subsets #include    using namespace std; // Returns value of Binomial Coefficient C(n k) int nCr(int n int k) {  int C[n + 1][k + 1];  int i j;  // Calculate value of Binomial Coefficient in bottom  // up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;  // Calculate value using previously stored  // values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k]; } // method returns sum of average of all subsets double resultOfAllSubsets(int arr[] int N) {  double result = 0.0; // Initialize result  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result; } // Driver code to test above methods int main() {  int arr[] = { 2 3 5 7 };  int N = sizeof(arr) / sizeof(int);  cout << resultOfAllSubsets(arr N) << endl;  return 0; } 
Java
// java program to get sum of // average of all subsets import java.io.*; class GFG {  // Returns value of Binomial  // Coefficient C(n k)  static int nCr(int n int k)  {  int C[][] = new int[n + 1][k + 1];  int i j;  // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;  // Calculate value using  // previously stored values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k];  }  // method returns sum of average of all subsets  static double resultOfAllSubsets(int arr[] int N)  {  // Initialize result  double result = 0.0;  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result;  }  // Driver code to test above methods  public static void main(String[] args)  {  int arr[] = { 2 3 5 7 };  int N = arr.length;  System.out.println(resultOfAllSubsets(arr N));  } } // This code is contributed by vt_m 
C#
// C# program to get sum of // average of all subsets using System; class GFG {    // Returns value of Binomial  // Coefficient C(n k)  static int nCr(int n int k)  {  int[ ] C = new int[n + 1 k + 1];  int i j;  // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.Min(i k); j++)   {  // Base Cases  if (j == 0 || j == i)  C[i j] = 1;  // Calculate value using  // previously stored values  else  C[i j] = C[i - 1 j - 1] + C[i - 1 j];  }  }  return C[n k];  }  // method returns sum of average   // of all subsets  static double resultOfAllSubsets(int[] arr int N)  {  // Initialize result  double result = 0.0;  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset   // of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result;  }  // Driver code to test above methods  public static void Main()  {  int[] arr = { 2 3 5 7 };  int N = arr.Length;  Console.WriteLine(resultOfAllSubsets(arr N));  } } // This code is contributed by Sam007 
JavaScript
<script>  // javascript program to get sum of  // average of all subsets    // Returns value of Binomial  // Coefficient C(n k)  function nCr(n k)  {  let C = new Array(n + 1);  for (let i = 0; i <= n; i++)   {  C[i] = new Array(k + 1);  for (let j = 0; j <= k; j++)   {  C[i][j] = 0;  }  }  let i j;    // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;    // Calculate value using  // previously stored values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k];  }    // method returns sum of average of all subsets  function resultOfAllSubsets(arr N)  {  // Initialize result  let result = 0.0;    // Find sum of elements  let sum = 0;  for (let i = 0; i < N; i++)  sum += arr[i];    // looping once for all subset of same size  for (let n = 1; n <= N; n++)    /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (sum * (nCr(N - 1 n - 1))) / n;    return result;  }    let arr = [ 2 3 5 7 ];  let N = arr.length;  document.write(resultOfAllSubsets(arr N));   </script> 
PHP
 // PHP program to get sum  // of average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr($n $k) { $C[$n + 1][$k + 1] = 0; $i; $j; // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= $n; $i++) { for ($j = 0; $j <= min($i $k); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value using  // previously stored values else $C[$i][$j] = $C[$i - 1][$j - 1] + $C[$i - 1][$j]; } } return $C[$n][$k]; } // method returns sum of // average of all subsets function resultOfAllSubsets($arr $N) { // Initialize result $result = 0.0; // Find sum of elements $sum = 0; for ($i = 0; $i < $N; $i++) $sum += $arr[$i]; // looping once for all  // subset of same size for ($n = 1; $n <= $N; $n++) /* each element occurs nCr(N-1   n-1) times while considering   subset of size n */ $result += (($sum * (nCr($N - 1 $n - 1))) / $n); return $result; } // Driver Code $arr = array( 2 3 5 7 ); $N = sizeof($arr) / sizeof($arr[0]); echo resultOfAllSubsets($arr $N) ; // This code is contributed by nitin mittal.  ?> 
Python3
# Python3 program to get sum # of average of all subsets # Returns value of Binomial # Coefficient C(n k) def nCr(n k): C = [[0 for i in range(k + 1)] for j in range(n + 1)] # Calculate value of Binomial  # Coefficient in bottom up manner for i in range(n + 1): for j in range(min(i k) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1 # Calculate value using  # previously stored values else: C[i][j] = C[i-1][j-1] + C[i-1][j] return C[n][k] # Method returns sum of # average of all subsets def resultOfAllSubsets(arr N): result = 0.0 # Initialize result # Find sum of elements sum = 0 for i in range(N): sum += arr[i] # looping once for all subset of same size for n in range(1 N + 1): # each element occurs nCr(N-1 n-1) times while # considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n return result # Driver code  arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) # This code is contributed by Anant Agarwal. 

Uitvoer
63.75

Tijdcomplexiteit: Op3)
Hulpruimte: Op2)

Efficiënte aanpak: ruimteoptimalisatie O(1)
Om de ruimtecomplexiteit van de bovenstaande benadering te optimaliseren, kunnen we een efficiëntere aanpak gebruiken die de noodzaak van de hele matrix vermijdt C[][] om binomiale coëfficiënten op te slaan. In plaats daarvan kunnen we een combinatieformule gebruiken om de binominale coëfficiënt indien nodig rechtstreeks te berekenen.

Implementatiestappen:

  • Herhaal de elementen van de array en bereken de som van alle elementen.
  • Herhaal elke subsetgrootte van 1 tot N.
  • Bereken binnen de lus de gemiddeld van de som van de elementen vermenigvuldigd met de binominale coëfficiënt voor de subsetgrootte. Voeg het berekende gemiddelde toe aan het resultaat.
  • Retourneer het eindresultaat.

Uitvoering:

C++
#include    using namespace std; // Method to calculate binomial coefficient C(n k) int binomialCoeff(int n int k) {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++)  {  res *= (n - i);  res /= (i + 1);  }  return res; } // Method to calculate the sum of the average of all subsets double resultOfAllSubsets(int arr[] int N) {  double result = 0.0;  int sum = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sum += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double)(sum * binomialCoeff(N - 1 n - 1)) / n;  return result; } // Driver code to test the above methods int main() {  int arr[] = { 2 3 5 7 };  int N = sizeof(arr) / sizeof(int);  cout << resultOfAllSubsets(arr N) << endl;  return 0; } 
Java
import java.util.Arrays; public class Main {  // Method to calculate binomial coefficient C(n k)  static int binomialCoeff(int n int k) {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++) {  res *= (n - i);  res /= (i + 1);  }  return res;  }  // Method to calculate the sum of the average of all subsets  static double resultOfAllSubsets(int arr[] int N) {  double result = 0.0;  int sum = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sum += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double) (sum * binomialCoeff(N - 1 n - 1)) / n;  return result;  }  // Driver code to test the above methods  public static void main(String[] args) {  int arr[] = {2 3 5 7};  int N = arr.length;  System.out.println(resultOfAllSubsets(arr N));  } } 
C#
using System; public class MainClass {  // Method to calculate binomial coefficient C(n k)  static int BinomialCoeff(int n int k)  {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++)  {  res *= (n - i);  res /= (i + 1);  }  return res;  }  // Method to calculate the sum of the average of all subsets  static double ResultOfAllSubsets(int[] arr int N)  {  double result = 0.0;  int sumVal = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sumVal += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double)(sumVal * BinomialCoeff(N - 1 n - 1)) / n;  return result;  }  // Driver code to test the above methods  public static void Main()  {  int[] arr = { 2 3 5 7 };  int N = arr.Length;  Console.WriteLine(ResultOfAllSubsets(arr N));  } } 
JavaScript
// Function to calculate binomial coefficient C(n k) function binomialCoeff(n k) {  let res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (let i = 0; i < k; i++) {  res *= (n - i);  res /= (i + 1);  }  return res; } // Function to calculate the sum of the average of all subsets function resultOfAllSubsets(arr) {  let result = 0.0;  let sum = arr.reduce((acc val) => acc + val 0);  // Loop for each subset size  for (let n = 1; n <= arr.length; n++) {  result += (sum * binomialCoeff(arr.length - 1 n - 1)) / n;  }  return result; } const arr = [2 3 5 7]; console.log(resultOfAllSubsets(arr)); 
Python3
# Method to calculate binomial coefficient C(n k) def binomialCoeff(n k): res = 1 # Since C(n k) = C(n n-k) if k > n - k: k = n - k # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for i in range(k): res *= (n - i) res //= (i + 1) return res # Method to calculate the sum of the average of all subsets def resultOfAllSubsets(arr N): result = 0.0 sum_val = 0 # Calculate the sum of elements for i in range(N): sum_val += arr[i] # Loop for each subset size for n in range(1 N + 1): result += (sum_val * binomialCoeff(N - 1 n - 1)) / n return result # Driver code to test the above methods arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) 


Uitvoer

63.75

Tijdcomplexiteit: O(n^2)
Hulpruimte: O(1)



 

Quiz maken