logo

Print alle priemfactoren en hun krachten uit

Gegeven een getal N, druk dan al zijn unieke priemfactoren en hun machten af ​​in N. 

Voorbeelden:  



Input: N = 100 Output: Factor Power 2 2 5 2 Input: N = 35 Output: Factor Power 5 1 7 1
Aanbevolen: los het op ' OEFENING ' eerst voordat u verder gaat met de oplossing.


A Eenvoudige oplossing is om eerst vind priemfactoren van N . Zoek vervolgens voor elke priemfactor de hoogste macht die N verdeelt en druk deze af.
Een Efficiënte oplossing is te gebruiken Zeef van Eratosthenes . 

  1)   First compute an array s[N+1] using   Sieve of Eratosthenes  . s[i] = Smallest prime factor of 'i' that divides 'i'. For example let N = 10 s[2] = s[4] = s[6] = s[8] = s[10] = 2; s[3] = s[9] = 3; s[5] = 5; s[7] = 7;   2)   Using the above computed array s[] we can find all powers in O(Log N) time. curr = s[N]; // Current prime factor of N cnt = 1; // Power of current prime factor // Printing prime factors and their powers   while   (N > 1) { N   /=   s[N]; // N is now N/s[N]. If new N also has its // smallest prime factor as curr increment // power and continue   if   (curr == s[N]) { cnt++;   continue;   } // Print prime factor and its power   print  (curr cnt); // Update current prime factor as s[N] and // initializing count as 1. curr = s[N]; cnt = 1; }

Hieronder vindt u de implementatie van bovenstaande stappen.

C++
// C++ Program to print prime factors and their // powers using Sieve Of Eratosthenes #include   using namespace std; // Using SieveOfEratosthenes to find smallest prime // factor of all the numbers. // For example if N is 10 // s[2] = s[4] = s[6] = s[10] = 2 // s[3] = s[9] = 3 // s[5] = 5 // s[7] = 7 void sieveOfEratosthenes(int N int s[]) {  // Create a boolean array 'prime[0..n]' and  // initialize all entries in it as false.  vector <bool> prime(N+1 false);  // Initializing smallest factor equal to 2  // for all the even numbers  for (int i=2; i<=N; i+=2)  s[i] = 2;  // For odd numbers less than equal to n  for (int i=3; i<=N; i+=2)  {  if (prime[i] == false)  {  // s(i) for a prime is the number itself  s[i] = i;  // For all multiples of current prime number  for (int j=i; j*i<=N; j+=2)  {  if (prime[i*j] == false)  {  prime[i*j] = true;  // i is the smallest prime factor for  // number 'i*j'.  s[i*j] = i;  }  }  }  } } // Function to generate prime factors and its power void generatePrimeFactors(int N) {  // s[i] is going to store smallest prime factor  // of i.  int s[N+1];  // Filling values in s[] using sieve  sieveOfEratosthenes(N s);  printf('Factor Powern');  int curr = s[N]; // Current prime factor of N  int cnt = 1; // Power of current prime factor  // Printing prime factors and their powers  while (N > 1)  {  N /= s[N];  // N is now N/s[N]. If new N also has smallest  // prime factor as curr increment power  if (curr == s[N])  {  cnt++;  continue;  }  printf('%dt%dn' curr cnt);  // Update current prime factor as s[N] and  // initializing count as 1.  curr = s[N];  cnt = 1;  } } //Driver Program int main() {  int N = 360;  generatePrimeFactors(N);  return 0; } 
Java
// Java Program to print prime  // factors and their powers using // Sieve Of Eratosthenes import java.io.*; public class GFG { // Using SieveOfEratosthenes  // to find smallest prime // factor of all the numbers. // For example if N is 10 // s[2] = s[4] = s[6] = s[10] = 2 // s[3] = s[9] = 3 // s[5] = 5 // s[7] = 7 static void sieveOfEratosthenes(int N   int s[]) {  // Create a boolean array   // 'prime[0..n]' and initialize  // all entries in it as false.  boolean[] prime = new boolean[N + 1];  // Initializing smallest   // factor equal to 2  // for all the even numbers  for (int i = 2; i <= N; i += 2)  s[i] = 2;  // For odd numbers less   // then equal to n  for (int i = 3; i <= N; i += 2)  {  if (prime[i] == false)  {  // s(i) for a prime is  // the number itself  s[i] = i;  // For all multiples of   // current prime number  for (int j = i; j * i <= N; j += 2)  {  if (prime[i * j] == false)  {  prime[i * j] = true;  // i is the smallest prime   // factor for number 'i*j'.  s[i * j] = i;  }  }  }  } } // Function to generate prime  // factors and its power static void generatePrimeFactors(int N) {  // s[i] is going to store   // smallest prime factor of i.  int[] s = new int[N + 1];  // Filling values in s[] using sieve  sieveOfEratosthenes(N s);  System.out.println('Factor Power');  int curr = s[N]; // Current prime factor of N  int cnt = 1; // Power of current prime factor  // Printing prime factors   // and their powers  while (N > 1)  {  N /= s[N];  // N is now N/s[N]. If new N   // also has smallest prime   // factor as curr increment power  if (curr == s[N])  {  cnt++;  continue;  }  System.out.println(curr + 't' + cnt);  // Update current prime factor   // as s[N] and initializing  // count as 1.  curr = s[N];  cnt = 1;  } } // Driver Code public static void main(String[] args) {  int N = 360;  generatePrimeFactors(N); } } // This code is contributed by mits 
Python3
# Python3 program to print prime # factors and their powers  # using Sieve Of Eratosthenes # Using SieveOfEratosthenes to # find smallest prime factor  # of all the numbers. # For example if N is 10 # s[2] = s[4] = s[6] = s[10] = 2 # s[3] = s[9] = 3 # s[5] = 5 # s[7] = 7 def sieveOfEratosthenes(N s): # Create a boolean array  # 'prime[0..n]' and initialize # all entries in it as false. prime = [False] * (N+1) # Initializing smallest factor # equal to 2 for all the even  # numbers for i in range(2 N+1 2): s[i] = 2 # For odd numbers less than  # equal to n for i in range(3 N+1 2): if (prime[i] == False): # s(i) for a prime is # the number itself s[i] = i # For all multiples of # current prime number for j in range(i int(N / i) + 1 2): if (prime[i*j] == False): prime[i*j] = True # i is the smallest  # prime factor for # number 'i*j'. s[i * j] = i # Function to generate prime # factors and its power def generatePrimeFactors(N): # s[i] is going to store # smallest prime factor  # of i. s = [0] * (N+1) # Filling values in s[]  # using sieve sieveOfEratosthenes(N s) print('Factor Power') # Current prime factor of N curr = s[N] # Power of current prime factor cnt = 1 # Printing prime factors and  #their powers while (N > 1): N //= s[N] # N is now N/s[N]. If new N  # also has smallest prime  # factor as curr increment # power if (curr == s[N]): cnt += 1 continue print(str(curr) + 't' + str(cnt)) # Update current prime factor # as s[N] and initializing  # count as 1. curr = s[N] cnt = 1 #Driver Program N = 360 generatePrimeFactors(N) # This code is contributed by Ansu Kumari 
C#
// C# Program to print prime  // factors and their powers using // Sieve Of Eratosthenes class GFG { // Using SieveOfEratosthenes  // to find smallest prime // factor of all the numbers. // For example if N is 10 // s[2] = s[4] = s[6] = s[10] = 2 // s[3] = s[9] = 3 // s[5] = 5 // s[7] = 7 static void sieveOfEratosthenes(int N int[] s) {  // Create a boolean array   // 'prime[0..n]' and initialize  // all entries in it as false.  bool[] prime = new bool[N + 1];  // Initializing smallest   // factor equal to 2  // for all the even numbers  for (int i = 2; i <= N; i += 2)  s[i] = 2;  // For odd numbers less   // then equal to n  for (int i = 3; i <= N; i += 2)  {  if (prime[i] == false)  {  // s(i) for a prime is  // the number itself  s[i] = i;  // For all multiples of   // current prime number  for (int j = i; j * i <= N; j += 2)  {  if (prime[i * j] == false)  {  prime[i * j] = true;  // i is the smallest prime   // factor for number 'i*j'.  s[i * j] = i;  }  }  }  } } // Function to generate prime  // factors and its power static void generatePrimeFactors(int N) {  // s[i] is going to store   // smallest prime factor of i.  int[] s = new int[N + 1];  // Filling values in s[] using sieve  sieveOfEratosthenes(N s);  System.Console.WriteLine('Factor Power');  int curr = s[N]; // Current prime factor of N  int cnt = 1; // Power of current prime factor  // Printing prime factors   // and their powers  while (N > 1)  {  N /= s[N];  // N is now N/s[N]. If new N   // also has smallest prime   // factor as curr increment power  if (curr == s[N])  {  cnt++;  continue;  }  System.Console.WriteLine(curr + 't' + cnt);  // Update current prime factor   // as s[N] and initializing  // count as 1.  curr = s[N];  cnt = 1;  } } // Driver Code static void Main() {  int N = 360;  generatePrimeFactors(N); } } // This code is contributed by mits 
PHP
 // PHP Program to print prime factors and  // their powers using Sieve Of Eratosthenes // Using SieveOfEratosthenes to find smallest  // prime factor of all the numbers. // For example if N is 10 // s[2] = s[4] = s[6] = s[10] = 2 // s[3] = s[9] = 3 // s[5] = 5 // s[7] = 7 function sieveOfEratosthenes($N &$s) { // Create a boolean array 'prime[0..n]' and // initialize all entries in it as false. $prime = array_fill(0 $N + 1 false); // Initializing smallest factor equal  // to 2 for all the even numbers for ($i = 2; $i <= $N; $i += 2) $s[$i] = 2; // For odd numbers less than equal to n for ($i = 3; $i <= $N; $i += 2) { if ($prime[$i] == false) { // s(i) for a prime is the // number itself $s[$i] = $i; // For all multiples of current  // prime number for ($j = $i; $j * $i <= $N; $j += 2) { if ($prime[$i * $j] == false) { $prime[$i * $j] = true; // i is the smallest prime factor  // for number 'i*j'. $s[$i * $j] = $i; } } } } } // Function to generate prime factors  // and its power function generatePrimeFactors($N) { // s[i] is going to store smallest  // prime factor of i. $s = array_fill(0 $N + 1 0); // Filling values in s[] using sieve sieveOfEratosthenes($N $s); print('Factor Powern'); $curr = $s[$N]; // Current prime factor of N $cnt = 1; // Power of current prime factor // Printing prime factors and their powers while ($N > 1) { if($s[$N]) $N = (int)($N / $s[$N]); // N is now N/s[N]. If new N als has smallest // prime factor as curr increment power if ($curr == $s[$N]) { $cnt++; continue; } print($curr . 't' . $cnt . 'n'); // Update current prime factor as s[N] // and initializing count as 1. $curr = $s[$N]; $cnt = 1; } } // Driver Code $N = 360; generatePrimeFactors($N); // This code is contributed by mits ?> 
JavaScript
<script> // javascript Program to print prime  // factors and their powers using // Sieve Of Eratosthenes // Using SieveOfEratosthenes  // to find smallest prime // factor of all the numbers. // For example if N is 10 // s[2] = s[4] = s[6] = s[10] = 2 // s[3] = s[9] = 3 // s[5] = 5 // s[7] = 7 function sieveOfEratosthenes(N s) {  // Create a boolean array   // 'prime[0..n]' and initialize  // all entries in it as false.  prime = Array.from({length: N+1} (_ i) => false);  // Initializing smallest   // factor equal to 2  // for all the even numbers  for (i = 2; i <= N; i += 2)  s[i] = 2;  // For odd numbers less   // then equal to n  for (i = 3; i <= N; i += 2)  {  if (prime[i] == false)  {  // s(i) for a prime is  // the number itself  s[i] = i;  // For all multiples of   // current prime number  for (j = i; j * i <= N; j += 2)  {  if (prime[i * j] == false)  {  prime[i * j] = true;  // i is the smallest prime   // factor for number 'i*j'.  s[i * j] = i;  }  }  }  } } // Function to generate prime  // factors and its power function generatePrimeFactors(N) {  // s[i] is going to store   // smallest prime factor of i.  var s = Array.from({length: N+1} (_ i) => 0);  // Filling values in s using sieve  sieveOfEratosthenes(N s);  document.write('Factor Power');  var curr = s[N]; // Current prime factor of N  var cnt = 1; // Power of current prime factor  // Printing prime factors   // and their powers  while (N > 1)  {  N /= s[N];  // N is now N/s[N]. If new N   // also has smallest prime   // factor as curr increment power  if (curr == s[N])  {  cnt++;  continue;  }  document.write('  
'
+curr + 't' + cnt); // Update current prime factor // as s[N] and initializing // count as 1. curr = s[N]; cnt = 1; } } // Driver Code var N = 360; generatePrimeFactors(N); // This code contributed by Princi Singh </script>

Uitgang:  
 



Factor Power 2 3 3 2 5 1

Tijdcomplexiteit: O(n*log(log(n)))
Hulpruimte: Op)

Het bovenstaande algoritme vindt alle machten in O(Log N) tijd nadat we s[] hebben ingevuld. Dit kan erg handig zijn in een competitieve omgeving waar we een bovengrens hebben en we voor veel testgevallen priemfactoren en hun bevoegdheden moeten berekenen. In dit scenario hoeft de array slechts één keer te worden gevuld.
 

typoscript datumtype