logo

Langste deelreeks zodat het verschil tussen aangrenzende delen één is

Probeer het eens op GfG Practice ' title=

Gegeven een a rray arr[] van maat nr de taak is om de langste vervolgreeks zodat de absoluut verschil tussen aangrenzende elementen is 1.

Voorbeelden: 

Invoer: arr[] = [10 9 4 5 4 8 6]
Uitgang: 3
Uitleg: De drie mogelijke deelreeksen met lengte 3 zijn [10 9 8] [4 5 4] en [4 5 6] waarbij aangrenzende elementen een absoluut verschil van 1 hebben. Er kon geen geldige deelreeks met een grotere lengte worden gevormd.

Invoer: arr[] = [1 2 3 4 5]
Uitgang: 5
Uitleg: Alle elementen kunnen in de geldige deelreeks worden opgenomen.



Recursie gebruiken - O(2^n) Tijd en O(n) Ruimte

Voor de recursieve benadering wij zullen overwegen twee gevallen bij elke stap:

  • Als het element aan de voorwaarde voldoet (de absoluut verschil tussen aangrenzende elementen is 1) wij erbij betrekken in de vervolgreeks en ga verder met de volgende element.
  • anders wij overslaan de huidig element en ga door naar het volgende.

Wiskundig gezien de herhaling relatie zal er als volgt uitzien:

java-string join
  • langsteSubseq(arr idx vorige) = max(langsteSubseq(arr idx + 1 vorige) 1 + langsteSubseq(arr idx + 1 idx))

Basisgeval:

  • Wanneer idx == arr.grootte() wij hebben bereikt het einde van de array dus retour 0 (aangezien er geen elementen meer kunnen worden opgenomen).
C++
// C++ program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion. #include    using namespace std; int subseqHelper(int idx int prev vector<int>& arr) {  // Base case: if index reaches the end of the array  if (idx == arr.size()) {  return 0;  }  // Skip the current element and move to the next index  int noTake = subseqHelper(idx + 1 prev arr);  // Take the current element if the condition is met  int take = 0;  if (prev == -1 || abs(arr[idx] - arr[prev]) == 1) {    take = 1 + subseqHelper(idx + 1 idx arr);  }  // Return the maximum of the two options  return max(take noTake); } // Function to find the longest subsequence int longestSubseq(vector<int>& arr) {    // Start recursion from index 0   // with no previous element  return subseqHelper(0 -1 arr); } int main() {  vector<int> arr = {10 9 4 5 4 8 6};  cout << longestSubseq(arr);  return 0; } 
Java
// Java program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion. import java.util.ArrayList; class GfG {  // Helper function to recursively find the subsequence  static int subseqHelper(int idx int prev   ArrayList<Integer> arr) {  // Base case: if index reaches the end of the array  if (idx == arr.size()) {  return 0;  }  // Skip the current element and move to the next index  int noTake = subseqHelper(idx + 1 prev arr);  // Take the current element if the condition is met  int take = 0;  if (prev == -1 || Math.abs(arr.get(idx)   - arr.get(prev)) == 1) {    take = 1 + subseqHelper(idx + 1 idx arr);  }  // Return the maximum of the two options  return Math.max(take noTake);  }  // Function to find the longest subsequence  static int longestSubseq(ArrayList<Integer> arr) {  // Start recursion from index 0   // with no previous element  return subseqHelper(0 -1 arr);  }  public static void main(String[] args) {  ArrayList<Integer> arr = new ArrayList<>();  arr.add(10);  arr.add(9);  arr.add(4);  arr.add(5);  arr.add(4);  arr.add(8);  arr.add(6);  System.out.println(longestSubseq(arr));  } } 
Python
# Python program to find the longest subsequence such that # the difference between adjacent elements is one using # recursion. def subseq_helper(idx prev arr): # Base case: if index reaches the end of the array if idx == len(arr): return 0 # Skip the current element and move to the next index no_take = subseq_helper(idx + 1 prev arr) # Take the current element if the condition is met take = 0 if prev == -1 or abs(arr[idx] - arr[prev]) == 1: take = 1 + subseq_helper(idx + 1 idx arr) # Return the maximum of the two options return max(take no_take) def longest_subseq(arr): # Start recursion from index 0  # with no previous element return subseq_helper(0 -1 arr) if __name__ == '__main__': arr = [10 9 4 5 4 8 6] print(longest_subseq(arr)) 
C#
// C# program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion. using System; using System.Collections.Generic; class GfG {  // Helper function to recursively find the subsequence  static int SubseqHelper(int idx int prev   List<int> arr) {  // Base case: if index reaches the end of the array  if (idx == arr.Count) {  return 0;  }  // Skip the current element and move to the next index  int noTake = SubseqHelper(idx + 1 prev arr);  // Take the current element if the condition is met  int take = 0;  if (prev == -1 || Math.Abs(arr[idx] - arr[prev]) == 1) {    take = 1 + SubseqHelper(idx + 1 idx arr);  }  // Return the maximum of the two options  return Math.Max(take noTake);  }  // Function to find the longest subsequence  static int LongestSubseq(List<int> arr) {  // Start recursion from index 0   // with no previous element  return SubseqHelper(0 -1 arr);  }  static void Main(string[] args) {    List<int> arr   = new List<int> { 10 9 4 5 4 8 6 };  Console.WriteLine(LongestSubseq(arr));  } } 
JavaScript
// JavaScript program to find the longest subsequence  // such that the difference between adjacent elements  // is one using recursion. function subseqHelper(idx prev arr) {  // Base case: if index reaches the end of the array  if (idx === arr.length) {  return 0;  }  // Skip the current element and move to the next index  let noTake = subseqHelper(idx + 1 prev arr);  // Take the current element if the condition is met  let take = 0;  if (prev === -1 || Math.abs(arr[idx] - arr[prev]) === 1) {  take = 1 + subseqHelper(idx + 1 idx arr);  }  // Return the maximum of the two options  return Math.max(take noTake); } function longestSubseq(arr) {  // Start recursion from index 0   // with no previous element  return subseqHelper(0 -1 arr); } const arr = [10 9 4 5 4 8 6]; console.log(longestSubseq(arr)); 

Uitvoer
3

Met behulp van Top-Down DP (Memoisatie ) -  O(n^2)  Tijd en  O(n^2)  Ruimte

Als we goed opletten, kunnen we zien dat de bovenstaande recursieve oplossing de volgende twee eigenschappen heeft van  Dynamische programmering :

1. Optimale onderbouw: De oplossing voor het vinden van de langste deelreeks zodat de verschil tussen aangrenzende elementen kan men afleiden uit de optimale oplossingen van kleinere deelproblemen. Specifiek voor elk gegeven IDx (huidige index) en vorige (vorige index in de deelreeks) kunnen we de recursieve relatie als volgt uitdrukken:

  • subseqHelper(idx vorige) = max(subseqHelper(idx + 1 vorige) 1 + subseqHelper(idx + 1 idx))

2. Overlappende deelproblemen: Bij het implementeren van een recursief Bij het oplossen van het probleem zien we dat veel deelproblemen meerdere keren worden berekend. Bijvoorbeeld bij het computeren subseqHelper(0 -1) voor een array arr = [10 9 4 5] het deelprobleem subseqHelper(2 -1) kan worden berekend meerdere keer. Om deze herhaling te voorkomen, gebruiken we memoisatie om de resultaten van eerder berekende deelproblemen op te slaan.

De recursieve oplossing omvat twee parameters:

  • IDx (de huidige index in de array).
  • vorige (de index van het laatst opgenomen element in de deelreeks).

We moeten volgen beide parameters dus we creëren een 2D-arraymemo van maat (n) x (n+1) . Wij initialiseren de 2D-arraymemo met -1 om aan te geven dat er nog geen deelproblemen zijn berekend. Voordat we een resultaat berekenen, controleren we of de waarde gelijk is aan memo[idx][vorige+1] is -1. Als dat zo is, berekenen we en winkel het resultaat. Anders retourneren we het opgeslagen resultaat.

C++
// C++ program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion with memoization. #include    using namespace std; // Helper function to recursively find the subsequence int subseqHelper(int idx int prev vector<int>& arr   vector<vector<int>>& memo) {  // Base case: if index reaches the end of the array  if (idx == arr.size()) {  return 0;  }  // Check if the result is already computed  if (memo[idx][prev + 1] != -1) {  return memo[idx][prev + 1];  }  // Skip the current element and move to the next index  int noTake = subseqHelper(idx + 1 prev arr memo);  // Take the current element if the condition is met  int take = 0;  if (prev == -1 || abs(arr[idx] - arr[prev]) == 1) {  take = 1 + subseqHelper(idx + 1 idx arr memo);  }  // Store the result in the memo table  return memo[idx][prev + 1] = max(take noTake); } // Function to find the longest subsequence int longestSubseq(vector<int>& arr) {    int n = arr.size();  // Create a memoization table initialized to -1  vector<vector<int>> memo(n vector<int>(n + 1 -1));  // Start recursion from index 0 with no previous element  return subseqHelper(0 -1 arr memo); } int main() {  // Input array of integers  vector<int> arr = {10 9 4 5 4 8 6};  cout << longestSubseq(arr);  return 0; } 
Java
// Java program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion with memoization. import java.util.ArrayList; import java.util.Arrays; class GfG {  // Helper function to recursively find the subsequence  static int subseqHelper(int idx int prev   ArrayList<Integer> arr   int[][] memo) {  // Base case: if index reaches the end of the array  if (idx == arr.size()) {  return 0;  }  // Check if the result is already computed  if (memo[idx][prev + 1] != -1) {  return memo[idx][prev + 1];  }  // Skip the current element and move to the next index  int noTake = subseqHelper(idx + 1 prev arr memo);  // Take the current element if the condition is met  int take = 0;  if (prev == -1 || Math.abs(arr.get(idx)   - arr.get(prev)) == 1) {  take = 1 + subseqHelper(idx + 1 idx arr memo);  }  // Store the result in the memo table  memo[idx][prev + 1] = Math.max(take noTake);  // Return the stored result  return memo[idx][prev + 1];  }  // Function to find the longest subsequence  static int longestSubseq(ArrayList<Integer> arr) {  int n = arr.size();  // Create a memoization table initialized to -1  int[][] memo = new int[n][n + 1];  for (int[] row : memo) {  Arrays.fill(row -1);  }  // Start recursion from index 0   // with no previous element  return subseqHelper(0 -1 arr memo);  }  public static void main(String[] args) {  ArrayList<Integer> arr = new ArrayList<>();  arr.add(10);  arr.add(9);  arr.add(4);  arr.add(5);  arr.add(4);  arr.add(8);  arr.add(6);  System.out.println(longestSubseq(arr));  } } 
Python
# Python program to find the longest subsequence such that # the difference between adjacent elements is one using # recursion with memoization. def subseq_helper(idx prev arr memo): # Base case: if index reaches the end of the array if idx == len(arr): return 0 # Check if the result is already computed if memo[idx][prev + 1] != -1: return memo[idx][prev + 1] # Skip the current element and move to the next index no_take = subseq_helper(idx + 1 prev arr memo) # Take the current element if the condition is met take = 0 if prev == -1 or abs(arr[idx] - arr[prev]) == 1: take = 1 + subseq_helper(idx + 1 idx arr memo) # Store the result in the memo table memo[idx][prev + 1] = max(take no_take) # Return the stored result return memo[idx][prev + 1] def longest_subseq(arr): n = len(arr) # Create a memoization table initialized to -1 memo = [[-1 for _ in range(n + 1)] for _ in range(n)] # Start recursion from index 0 with  # no previous element return subseq_helper(0 -1 arr memo) if __name__ == '__main__': arr = [10 9 4 5 4 8 6] print(longest_subseq(arr)) 
C#
// C# program to find the longest subsequence such that // the difference between adjacent elements is one using // recursion with memoization. using System; using System.Collections.Generic; class GfG {  // Helper function to recursively find the subsequence  static int SubseqHelper(int idx int prev  List<int> arr int[] memo) {  // Base case: if index reaches the end of the array  if (idx == arr.Count) {  return 0;  }  // Check if the result is already computed  if (memo[idx prev + 1] != -1) {  return memo[idx prev + 1];  }  // Skip the current element and move to the next index  int noTake = SubseqHelper(idx + 1 prev arr memo);  // Take the current element if the condition is met  int take = 0;  if (prev == -1 || Math.Abs(arr[idx] - arr[prev]) == 1) {  take = 1 + SubseqHelper(idx + 1 idx arr memo);  }  // Store the result in the memoization table  memo[idx prev + 1] = Math.Max(take noTake);  // Return the stored result  return memo[idx prev + 1];  }  // Function to find the longest subsequence  static int LongestSubseq(List<int> arr) {    int n = arr.Count;    // Create a memoization table initialized to -1  int[] memo = new int[n n + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j <= n; j++) {  memo[i j] = -1;  }  }  // Start recursion from index 0 with no previous element  return SubseqHelper(0 -1 arr memo);  }  static void Main(string[] args) {  List<int> arr   = new List<int> { 10 9 4 5 4 8 6 };  Console.WriteLine(LongestSubseq(arr));  } } 
JavaScript
// JavaScript program to find the longest subsequence  // such that the difference between adjacent elements  // is one using recursion with memoization. function subseqHelper(idx prev arr memo) {  // Base case: if index reaches the end of the array  if (idx === arr.length) {  return 0;  }  // Check if the result is already computed  if (memo[idx][prev + 1] !== -1) {  return memo[idx][prev + 1];  }  // Skip the current element and move to the next index  let noTake = subseqHelper(idx + 1 prev arr memo);  // Take the current element if the condition is met  let take = 0;  if (prev === -1 || Math.abs(arr[idx] - arr[prev]) === 1) {  take = 1 + subseqHelper(idx + 1 idx arr memo);  }  // Store the result in the memoization table  memo[idx][prev + 1] = Math.max(take noTake);  // Return the stored result  return memo[idx][prev + 1]; } function longestSubseq(arr) {  let n = arr.length;    // Create a memoization table initialized to -1  let memo =  Array.from({ length: n } () => Array(n + 1).fill(-1));  // Start recursion from index 0 with no previous element  return subseqHelper(0 -1 arr memo); } const arr = [10 9 4 5 4 8 6]; console.log(longestSubseq(arr)); 

Uitvoer
3

Bottom-up DP gebruiken (tabellering) -   Op)  Tijd en  Op)  Ruimte

De aanpak is vergelijkbaar met die van recursief methode, maar in plaats van het probleem recursief op te splitsen, bouwen we de oplossing iteratief in a bottom-up manier.
In plaats van recursie te gebruiken, gebruiken we a hashmap gebaseerde dynamische programmeertabel (dp) om het op te slaan lengtes van de langste deelreeksen. Dit helpt ons de gegevens efficiënt te berekenen en bij te werken vervolg lengtes voor alle mogelijke waarden van array-elementen.

Dynamische programmeerrelatie:

dp[x] vertegenwoordigt de lengte van de langste deelreeks die eindigt op het element x.

Voor elk element arr[ik] in de array: If arr[ik] + 1 of arr[ik] - 1 bestaat in dp:

  • dp[arr[i]] = 1 + max(dp[arr[i] + 1] dp[arr[i] - 1]);

Dit betekent dat we de deelreeksen die eindigen op kunnen uitbreiden arr[ik] + 1 of arr[ik] - 1 door inbegrepen arr[ik].

Start anders een nieuwe deelreeks:

  • dp[arr[i]] = 1;
C++
// C++ program to find the longest subsequence such that // the difference between adjacent elements is one using // Tabulation. #include    using namespace std; int longestSubseq(vector<int>& arr) {    int n = arr.size();  // Base case: if the array has only   // one element  if (n == 1) {  return 1;  }  // Map to store the length of the longest subsequence  unordered_map<int int> dp;  int ans = 1;  // Loop through the array to fill the map  // with subsequence lengths  for (int i = 0; i < n; ++i) {    // Check if the current element is adjacent  // to another subsequence  if (dp.count(arr[i] + 1) > 0   || dp.count(arr[i] - 1) > 0) {    dp[arr[i]] = 1 +   max(dp[arr[i] + 1] dp[arr[i] - 1]);  }   else {  dp[arr[i]] = 1;   }    // Update the result with the maximum  // subsequence length  ans = max(ans dp[arr[i]]);  }  return ans; } int main() {    vector<int> arr = {10 9 4 5 4 8 6};  cout << longestSubseq(arr);  return 0; } 
Java
// Java code to find the longest subsequence such that // the difference between adjacent elements  // is one using Tabulation. import java.util.HashMap; import java.util.ArrayList; class GfG {  static int longestSubseq(ArrayList<Integer> arr) {  int n = arr.size();  // Base case: if the array has only one element  if (n == 1) {  return 1;  }  // Map to store the length of the longest subsequence  HashMap<Integer Integer> dp = new HashMap<>();  int ans = 1;  // Loop through the array to fill the map   // with subsequence lengths  for (int i = 0; i < n; ++i) {  // Check if the current element is adjacent   // to another subsequence  if (dp.containsKey(arr.get(i) + 1)   || dp.containsKey(arr.get(i) - 1)) {  dp.put(arr.get(i) 1 +   Math.max(dp.getOrDefault(arr.get(i) + 1 0)   dp.getOrDefault(arr.get(i) - 1 0)));  }   else {  dp.put(arr.get(i) 1);   }  // Update the result with the maximum   // subsequence length  ans = Math.max(ans dp.get(arr.get(i)));  }  return ans;  }  public static void main(String[] args) {  ArrayList<Integer> arr = new ArrayList<>();  arr.add(10);  arr.add(9);  arr.add(4);  arr.add(5);  arr.add(4);  arr.add(8);  arr.add(6);    System.out.println(longestSubseq(arr));  } } 
Python
# Python code to find the longest subsequence such that # the difference between adjacent elements is  # one using Tabulation. def longestSubseq(arr): n = len(arr) # Base case: if the array has only one element if n == 1: return 1 # Dictionary to store the length of the  # longest subsequence dp = {} ans = 1 for i in range(n): # Check if the current element is adjacent to  # another subsequence if arr[i] + 1 in dp or arr[i] - 1 in dp: dp[arr[i]] = 1 + max(dp.get(arr[i] + 1 0)  dp.get(arr[i] - 1 0)) else: dp[arr[i]] = 1 # Update the result with the maximum # subsequence length ans = max(ans dp[arr[i]]) return ans if __name__ == '__main__': arr = [10 9 4 5 4 8 6] print(longestSubseq(arr)) 
C#
// C# code to find the longest subsequence such that // the difference between adjacent elements  // is one using Tabulation. using System; using System.Collections.Generic; class GfG {  static int longestSubseq(List<int> arr) {  int n = arr.Count;  // Base case: if the array has only one element  if (n == 1) {  return 1;  }  // Map to store the length of the longest subsequence  Dictionary<int int> dp = new Dictionary<int int>();  int ans = 1;  // Loop through the array to fill the map with   // subsequence lengths  for (int i = 0; i < n; ++i) {  // Check if the current element is adjacent to  // another subsequence  if (dp.ContainsKey(arr[i] + 1) || dp.ContainsKey(arr[i] - 1)) {  dp[arr[i]] = 1 + Math.Max(dp.GetValueOrDefault(arr[i] + 1 0)  dp.GetValueOrDefault(arr[i] - 1 0));  }   else {  dp[arr[i]] = 1;   }  // Update the result with the maximum   // subsequence length  ans = Math.Max(ans dp[arr[i]]);  }  return ans;  }  static void Main(string[] args) {  List<int> arr   = new List<int> { 10 9 4 5 4 8 6 };  Console.WriteLine(longestSubseq(arr));  } } 
JavaScript
// Function to find the longest subsequence such that // the difference between adjacent elements // is one using Tabulation. function longestSubseq(arr) {  const n = arr.length;  // Base case: if the array has only one element  if (n === 1) {  return 1;  }  // Object to store the length of the  // longest subsequence  let dp = {};  let ans = 1;  // Loop through the array to fill the object  // with subsequence lengths  for (let i = 0; i < n; i++) {  // Check if the current element is adjacent to   // another subsequence  if ((arr[i] + 1) in dp || (arr[i] - 1) in dp) {  dp[arr[i]] = 1 + Math.max(dp[arr[i] + 1]  || 0 dp[arr[i] - 1] || 0);  } else {  dp[arr[i]] = 1;  }  // Update the result with the maximum   // subsequence length  ans = Math.max(ans dp[arr[i]]);  }  return ans; } const arr = [10 9 4 5 4 8 6]; console.log(longestSubseq(arr)); 

Uitvoer
3
Quiz maken