Gegeven een n × n binaire matrix samen met bestaande uit 0s En 1s . Jouw taak is om de maat van de grootste te vinden '+' vorm die alleen kan worden gevormd met behulp van 1s .

A '+' vorm bestaat uit een centrale cel met vier armen die zich in alle vier de richtingen uitstrekken ( links en rechts omhoog omlaag ) terwijl het binnen de matrixgrenzen blijft. De grootte van een '+' wordt gedefinieerd als de totaal aantal cellen het vormen ervan inclusief het midden en alle armen.
npm schone cache
De taak is om de maximale grootte van enige geldige '+' in samen met . Indien nee '+' terugkeer kan worden gevormd .
Voorbeelden:
Invoer: met = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Uitgang: 9
Uitleg: In het midden van de mat kan een ‘+’ met een armlengte van 2 (2 cellen in elke richting + 1 midden) worden gevormd.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
Totale grootte = (2 × 4) + 1 = 9
Invoer: met = [ [0 1 1] [0 0 1] [1 1 1] ]
Uitgang: 1
Uitleg: Een ‘+’ met een armlengte van 0 (0 cellen in elke richting + 1 midden) kan worden gevormd met elk van de 1’en.Invoer: met = [ [0] ]
Uitgang:
Uitleg: Nee Er kan een ‘+’ teken worden gevormd.
[Naïeve benadering] - Beschouw elk punt als middelpunt - O(n^4) Tijd en O(n^4) Ruimte
Doorloop de matrixcellen één voor één. Beschouw elk doorlopen punt als middelpunt van een plus en bepaal de grootte van de +. Voor elk element doorlopen we links rechts onder en boven. Het ergste geval in deze oplossing doet zich voor als we alle 1-en hebben.
[Verwachte aanpak] - Bereken vooraf 4 arrays - O(n^2) Tijd en O(n^2) Ruimte
De idee is het onderhouden van vier hulpmatrices links[][] rechts[][] boven[][] onder[][] om opeenvolgende 1-en in elke richting op te slaan. Voor elke cel (ik) in de invoermatrix slaan we onderstaande informatie hierin op vier matrices -
- links(ik) slaat het maximale aantal opeenvolgende 1-en op voor de links van cel (ij) inclusief cel (ij).
- rechts(ik) slaat het maximale aantal opeenvolgende 1-en op voor de rechts van cel (ij) inclusief cel (ij).
- top(ik) slaat het maximale aantal opeenvolgende 1's op bovenkant van cel (ij) inclusief cel (ij).
- bodem(i j) slaat het maximale aantal opeenvolgende 1's op onderkant van cel (ij) inclusief cel (ij).
Na het berekenen van de waarde voor elke cel van bovenstaande matrices wordt de grootste'+' zou worden gevormd door een cel met een invoermatrix die een maximale waarde heeft door het minimum van ( links(i j) rechts(i j) boven(i j) onder(i j) )
Wij kunnen gebruiken Dynamische programmering om het totale aantal opeenvolgende enen in elke richting te berekenen:
als mat(i j) == 1
links(i j) = links(i j - 1) + 1anders links(i j) = 0
np.histogram
als mat(i j) == 1
top(i j) = top(i - 1 j) + 1;anders top(i j) = 0;
als mat(i j) == 1
bodem(i j) = bodem(i + 1 j) + 1;anders bodem(i j) = 0;
als mat(i j) == 1
rechts(ij) = rechts(ij + 1) + 1;anders rechts(i j) = 0;
Hieronder vindt u de implementatie van bovenstaande aanpak:
C++// C++ program to find the largest '+' in a binary matrix // using Dynamic Programming #include using namespace std; int findLargestPlus(vector<vector<int>> &mat) { int n = mat.size(); vector<vector<int>> left(n vector<int>(n 0)); vector<vector<int>> right(n vector<int>(n 0)); vector<vector<int>> top(n vector<int>(n 0)); vector<vector<int>> bottom(n vector<int>(n 0)); // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i][j] == 1) { right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { int armLength = min({left[i][j] right[i][j] top[i][j] bottom[i][j]}); maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } int main() { // Hardcoded input matrix vector<vector<int>> mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; cout << findLargestPlus(mat) << endl; return 0; }
Java // Java program to find the largest '+' in a binary matrix // using Dynamic Programming class GfG { static int findLargestPlus(int[][] mat) { int n = mat.length; int[][] left = new int[n][n]; int[][] right = new int[n][n]; int[][] top = new int[n][n]; int[][] bottom = new int[n][n]; // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i][j] == 1) { right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { int armLength = Math.min(Math.min(left[i][j] right[i][j]) Math.min(top[i][j] bottom[i][j])); maxPlusSize = Math.max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } public static void main(String[] args) { // Hardcoded input matrix int[][] mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; System.out.println(findLargestPlus(mat)); } }
Python # Python program to find the largest '+' in a binary matrix # using Dynamic Programming def findLargestPlus(mat): n = len(mat) left = [[0] * n for i in range(n)] right = [[0] * n for i in range(n)] top = [[0] * n for i in range(n)] bottom = [[0] * n for i in range(n)] # Fill left and top matrices for i in range(n): for j in range(n): if mat[i][j] == 1: left[i][j] = 1 if j == 0 else left[i][j - 1] + 1 top[i][j] = 1 if i == 0 else top[i - 1][j] + 1 # Fill right and bottom matrices for i in range(n - 1 -1 -1): for j in range(n - 1 -1 -1): if mat[i][j] == 1: right[i][j] = 1 if j == n - 1 else right[i][j + 1] + 1 bottom[i][j] = 1 if i == n - 1 else bottom[i + 1][j] + 1 maxPlusSize = 0 # Compute the maximum '+' size for i in range(n): for j in range(n): if mat[i][j] == 1: armLength = min(left[i][j] right[i][j] top[i][j] bottom[i][j]) maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1) return maxPlusSize if __name__ == '__main__': # Hardcoded input matrix mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ] print(findLargestPlus(mat))
C# // C# program to find the largest '+' in a binary matrix // using Dynamic Programming using System; class GfG { static int FindLargestPlus(int[] mat) { int n = mat.GetLength(0); int[] left = new int[n n]; int[] right = new int[n n]; int[] top = new int[n n]; int[] bottom = new int[n n]; // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i j] == 1) { left[i j] = (j == 0) ? 1 : left[i j - 1] + 1; top[i j] = (i == 0) ? 1 : top[i - 1 j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i j] == 1) { right[i j] = (j == n - 1) ? 1 : right[i j + 1] + 1; bottom[i j] = (i == n - 1) ? 1 : bottom[i + 1 j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i j] == 1) { int armLength = Math.Min(Math.Min(left[i j] right[i j]) Math.Min(top[i j] bottom[i j])); maxPlusSize = Math.Max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } public static void Main() { // Hardcoded input matrix int[] mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; Console.WriteLine(FindLargestPlus(mat)); } }
JavaScript // JavaScript program to find the largest '+' in a binary matrix // using Dynamic Programming function findLargestPlus(mat) { let n = mat.length; let left = Array.from({ length: n } () => Array(n).fill(0)); let right = Array.from({ length: n } () => Array(n).fill(0)); let top = Array.from({ length: n } () => Array(n).fill(0)); let bottom = Array.from({ length: n } () => Array(n).fill(0)); // Fill left and top matrices for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { if (mat[i][j] === 1) { left[i][j] = (j === 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i === 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (let i = n - 1; i >= 0; i--) { for (let j = n - 1; j >= 0; j--) { if (mat[i][j] === 1) { right[i][j] = (j === n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i === n - 1) ? 1 : bottom[i + 1][j] + 1; } } } let maxPlusSize = 0; // Compute the maximum '+' size for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { if (mat[i][j] === 1) { let armLength = Math.min(left[i][j] right[i][j] top[i][j] bottom[i][j]); maxPlusSize = Math.max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } // Hardcoded input matrix let mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]; console.log(findLargestPlus(mat));
Uitvoer
9
Tijdcomplexiteit: O(n²) vanwege vier doorgangen om de directionele matrices te berekenen en één laatste doorgang om de grootste '+' te bepalen. Elke doorgang kost O(n²) tijd, wat leidt tot een algehele complexiteit van O(n²).
Ruimtecomplexiteit: O(n²) vanwege vier hulpmatrices (links rechtsboven onder) die O(n²) extra ruimte in beslag nemen.