Java Thread-pool vertegenwoordigt een groep werkthreads die op de taak wachten en vele malen opnieuw worden gebruikt.
In het geval van een threadpool wordt een groep threads met een vaste grootte gemaakt. Een thread uit de threadpool wordt eruit gehaald en door de serviceprovider aan een taak toegewezen. Na voltooiing van de taak wordt de thread weer in de threadpool opgenomen.
Threadpool-methoden
newFixedThreadPool(int s): De methode creëert een threadpool met de vaste grootte s.
newCachedThreadPool(): De methode maakt een nieuwe threadpool aan die de nieuwe threads aanmaakt wanneer dat nodig is, maar die nog steeds de eerder gemaakte thread gebruikt wanneer deze beschikbaar is voor gebruik.
nieuweSingleThreadExecutor(): De methode creëert een nieuwe thread.
Voordeel van Java Threadpool
Betere prestatie Het bespaart tijd omdat u geen nieuw onderwerp hoeft aan te maken.
Realtime gebruik
Het wordt gebruikt in Servlet en JSP, waarbij de container een threadpool creëert om het verzoek te verwerken.
Voorbeeld van Java-threadpool
Laten we een eenvoudig voorbeeld bekijken van de Java-threadpool met behulp van ExecutorService en Executors.
Bestand: WorkerThread.java
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; class WorkerThread implements Runnable { private String message; public WorkerThread(String s){ this.message=s; } public void run() { System.out.println(Thread.currentThread().getName()+' (Start) message = '+message); processmessage();//call processmessage method that sleeps the thread for 2 seconds System.out.println(Thread.currentThread().getName()+' (End)');//prints thread name } private void processmessage() { try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } } }
Bestand: TestThreadPool.java
public class TestThreadPool { public static void main(String[] args) { ExecutorService executor = Executors.newFixedThreadPool(5);//creating a pool of 5 threads for (int i = 0; i <10; i++) { runnable worker="new" workerthread('' + i); executor.execute(worker); calling execute method of executorservice } executor.shutdown(); while (!executor.isterminated()) system.out.println('finished all threads'); < pre> <p> <strong>Output:</strong> </p> <pre>pool-1-thread-1 (Start) message = 0 pool-1-thread-2 (Start) message = 1 pool-1-thread-3 (Start) message = 2 pool-1-thread-5 (Start) message = 4 pool-1-thread-4 (Start) message = 3 pool-1-thread-2 (End) pool-1-thread-2 (Start) message = 5 pool-1-thread-1 (End) pool-1-thread-1 (Start) message = 6 pool-1-thread-3 (End) pool-1-thread-3 (Start) message = 7 pool-1-thread-4 (End) pool-1-thread-4 (Start) message = 8 pool-1-thread-5 (End) pool-1-thread-5 (Start) message = 9 pool-1-thread-2 (End) pool-1-thread-1 (End) pool-1-thread-4 (End) pool-1-thread-3 (End) pool-1-thread-5 (End) Finished all threads </pre> download this example <h2>Thread Pool Example: 2</h2> <p>Let's see another example of the thread pool.</p> <p> <strong>FileName:</strong> ThreadPoolExample.java</p> <pre> // important import statements import java.util.Date; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.text.SimpleDateFormat; class Tasks implements Runnable { private String taskName; // constructor of the class Tasks public Tasks(String str) { // initializing the field taskName taskName = str; } // Printing the task name and then sleeps for 1 sec // The complete process is getting repeated five times public void run() { try { for (int j = 0; j <= 5; j++) { if (j="=" 0) date dt="new" date(); simpledateformat sdf="new" simpledateformat('hh : mm ss'); prints the initialization time for every task system.out.println('initialization name: '+ taskname + '=" + sdf.format(dt)); } else { Date dt = new Date(); SimpleDateFormat sdf = new SimpleDateFormat(" hh execution system.out.println('time of is complete.'); } catch(interruptedexception ie) ie.printstacktrace(); public class threadpoolexample maximum number threads in thread pool static final int max_th="3;" main method void main(string argvs[]) creating five new tasks runnable rb1="new" tasks('task 1'); rb2="new" 2'); rb3="new" 3'); rb4="new" 4'); rb5="new" 5'); a with size fixed executorservice pl="Executors.newFixedThreadPool(MAX_TH);" passes objects to execute (step 3) pl.execute(rb1); pl.execute(rb2); pl.execute(rb3); pl.execute(rb4); pl.execute(rb5); shutdown pl.shutdown(); < pre> <p> <strong>Output:</strong> </p> <pre> Initialization time for the task name: task 1 = 06 : 13 : 02 Initialization time for the task name: task 2 = 06 : 13 : 02 Initialization time for the task name: task 3 = 06 : 13 : 02 Time of execution for the task name: task 1 = 06 : 13 : 04 Time of execution for the task name: task 2 = 06 : 13 : 04 Time of execution for the task name: task 3 = 06 : 13 : 04 Time of execution for the task name: task 1 = 06 : 13 : 05 Time of execution for the task name: task 2 = 06 : 13 : 05 Time of execution for the task name: task 3 = 06 : 13 : 05 Time of execution for the task name: task 1 = 06 : 13 : 06 Time of execution for the task name: task 2 = 06 : 13 : 06 Time of execution for the task name: task 3 = 06 : 13 : 06 Time of execution for the task name: task 1 = 06 : 13 : 07 Time of execution for the task name: task 2 = 06 : 13 : 07 Time of execution for the task name: task 3 = 06 : 13 : 07 Time of execution for the task name: task 1 = 06 : 13 : 08 Time of execution for the task name: task 2 = 06 : 13 : 08 Time of execution for the task name: task 3 = 06 : 13 : 08 task 2 is complete. Initialization time for the task name: task 4 = 06 : 13 : 09 task 1 is complete. Initialization time for the task name: task 5 = 06 : 13 : 09 task 3 is complete. Time of execution for the task name: task 4 = 06 : 13 : 10 Time of execution for the task name: task 5 = 06 : 13 : 10 Time of execution for the task name: task 4 = 06 : 13 : 11 Time of execution for the task name: task 5 = 06 : 13 : 11 Time of execution for the task name: task 4 = 06 : 13 : 12 Time of execution for the task name: task 5 = 06 : 13 : 12 Time of execution for the task name: task 4 = 06 : 13 : 13 Time of execution for the task name: task 5 = 06 : 13 : 13 Time of execution for the task name: task 4 = 06 : 13 : 14 Time of execution for the task name: task 5 = 06 : 13 : 14 task 4 is complete. task 5 is complete. </pre> <p> <strong>Explanation:</strong> It is evident by looking at the output of the program that tasks 4 and 5 are executed only when the thread has an idle thread. Until then, the extra tasks are put in the queue.</p> <p>The takeaway from the above example is when one wants to execute 50 tasks but is not willing to create 50 threads. In such a case, one can create a pool of 10 threads. Thus, 10 out of 50 tasks are assigned, and the rest are put in the queue. Whenever any thread out of 10 threads becomes idle, it picks up the 11<sup>th </sup>task. The other pending tasks are treated the same way.</p> <h2>Risks involved in Thread Pools</h2> <p>The following are the risk involved in the thread pools.</p> <p> <strong>Deadlock:</strong> It is a known fact that deadlock can come in any program that involves multithreading, and a thread pool introduces another scenario of deadlock. Consider a scenario where all the threads that are executing are waiting for the results from the threads that are blocked and waiting in the queue because of the non-availability of threads for the execution.</p> <p> <strong>Thread Leakage:</strong> Leakage of threads occurs when a thread is being removed from the pool to execute a task but is not returning to it after the completion of the task. For example, when a thread throws the exception and the pool class is not able to catch this exception, then the thread exits and reduces the thread pool size by 1. If the same thing repeats a number of times, then there are fair chances that the pool will become empty, and hence, there are no threads available in the pool for executing other requests.</p> <p> <strong>Resource Thrashing:</strong> A lot of time is wasted in context switching among threads when the size of the thread pool is very large. Whenever there are more threads than the optimal number may cause the starvation problem, and it leads to resource thrashing.</p> <h2>Points to Remember</h2> <p>Do not queue the tasks that are concurrently waiting for the results obtained from the other tasks. It may lead to a deadlock situation, as explained above.</p> <p>Care must be taken whenever threads are used for the operation that is long-lived. It may result in the waiting of thread forever and will finally lead to the leakage of the resource.</p> <p>In the end, the thread pool has to be ended explicitly. If it does not happen, then the program continues to execute, and it never ends. Invoke the shutdown() method on the thread pool to terminate the executor. Note that if someone tries to send another task to the executor after shutdown, it will throw a RejectedExecutionException.</p> <p>One needs to understand the tasks to effectively tune the thread pool. If the given tasks are contrasting, then one should look for pools for executing different varieties of tasks so that one can properly tune them.</p> <p>To reduce the probability of running JVM out of memory, one can control the maximum threads that can run in JVM. The thread pool cannot create new threads after it has reached the maximum limit.</p> <p>A thread pool can use the same used thread if the thread has finished its execution. Thus, the time and resources used for the creation of a new thread are saved.</p> <h2>Tuning the Thread Pool</h2> <p>The accurate size of a thread pool is decided by the number of available processors and the type of tasks the threads have to execute. If a system has the P processors that have only got the computation type processes, then the maximum size of the thread pool of P or P + 1 achieves the maximum efficiency. However, the tasks may have to wait for I/O, and in such a scenario, one has to take into consideration the ratio of the waiting time (W) and the service time (S) for the request; resulting in the maximum size of the pool P * (1 + W / S) for the maximum efficiency.</p> <h2>Conclusion</h2> <p>A thread pool is a very handy tool for organizing applications, especially on the server-side. Concept-wise, a thread pool is very easy to comprehend. However, one may have to look at a lot of issues when dealing with a thread pool. It is because the thread pool comes with some risks involved it (risks are discussed above).</p> <hr></=></pre></10;>download dit voorbeeld
Voorbeeld van een threadpool: 2
Laten we nog een voorbeeld van de threadpool bekijken.
Bestandsnaam: ThreadPoolExample.java
// important import statements import java.util.Date; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.text.SimpleDateFormat; class Tasks implements Runnable { private String taskName; // constructor of the class Tasks public Tasks(String str) { // initializing the field taskName taskName = str; } // Printing the task name and then sleeps for 1 sec // The complete process is getting repeated five times public void run() { try { for (int j = 0; j <= 5; j++) { if (j="=" 0) date dt="new" date(); simpledateformat sdf="new" simpledateformat(\'hh : mm ss\'); prints the initialization time for every task system.out.println(\'initialization name: \'+ taskname + \'=" + sdf.format(dt)); } else { Date dt = new Date(); SimpleDateFormat sdf = new SimpleDateFormat(" hh execution system.out.println(\'time of is complete.\'); } catch(interruptedexception ie) ie.printstacktrace(); public class threadpoolexample maximum number threads in thread pool static final int max_th="3;" main method void main(string argvs[]) creating five new tasks runnable rb1="new" tasks(\'task 1\'); rb2="new" 2\'); rb3="new" 3\'); rb4="new" 4\'); rb5="new" 5\'); a with size fixed executorservice pl="Executors.newFixedThreadPool(MAX_TH);" passes objects to execute (step 3) pl.execute(rb1); pl.execute(rb2); pl.execute(rb3); pl.execute(rb4); pl.execute(rb5); shutdown pl.shutdown(); < pre> <p> <strong>Output:</strong> </p> <pre> Initialization time for the task name: task 1 = 06 : 13 : 02 Initialization time for the task name: task 2 = 06 : 13 : 02 Initialization time for the task name: task 3 = 06 : 13 : 02 Time of execution for the task name: task 1 = 06 : 13 : 04 Time of execution for the task name: task 2 = 06 : 13 : 04 Time of execution for the task name: task 3 = 06 : 13 : 04 Time of execution for the task name: task 1 = 06 : 13 : 05 Time of execution for the task name: task 2 = 06 : 13 : 05 Time of execution for the task name: task 3 = 06 : 13 : 05 Time of execution for the task name: task 1 = 06 : 13 : 06 Time of execution for the task name: task 2 = 06 : 13 : 06 Time of execution for the task name: task 3 = 06 : 13 : 06 Time of execution for the task name: task 1 = 06 : 13 : 07 Time of execution for the task name: task 2 = 06 : 13 : 07 Time of execution for the task name: task 3 = 06 : 13 : 07 Time of execution for the task name: task 1 = 06 : 13 : 08 Time of execution for the task name: task 2 = 06 : 13 : 08 Time of execution for the task name: task 3 = 06 : 13 : 08 task 2 is complete. Initialization time for the task name: task 4 = 06 : 13 : 09 task 1 is complete. Initialization time for the task name: task 5 = 06 : 13 : 09 task 3 is complete. Time of execution for the task name: task 4 = 06 : 13 : 10 Time of execution for the task name: task 5 = 06 : 13 : 10 Time of execution for the task name: task 4 = 06 : 13 : 11 Time of execution for the task name: task 5 = 06 : 13 : 11 Time of execution for the task name: task 4 = 06 : 13 : 12 Time of execution for the task name: task 5 = 06 : 13 : 12 Time of execution for the task name: task 4 = 06 : 13 : 13 Time of execution for the task name: task 5 = 06 : 13 : 13 Time of execution for the task name: task 4 = 06 : 13 : 14 Time of execution for the task name: task 5 = 06 : 13 : 14 task 4 is complete. task 5 is complete. </pre> <p> <strong>Explanation:</strong> It is evident by looking at the output of the program that tasks 4 and 5 are executed only when the thread has an idle thread. Until then, the extra tasks are put in the queue.</p> <p>The takeaway from the above example is when one wants to execute 50 tasks but is not willing to create 50 threads. In such a case, one can create a pool of 10 threads. Thus, 10 out of 50 tasks are assigned, and the rest are put in the queue. Whenever any thread out of 10 threads becomes idle, it picks up the 11<sup>th </sup>task. The other pending tasks are treated the same way.</p> <h2>Risks involved in Thread Pools</h2> <p>The following are the risk involved in the thread pools.</p> <p> <strong>Deadlock:</strong> It is a known fact that deadlock can come in any program that involves multithreading, and a thread pool introduces another scenario of deadlock. Consider a scenario where all the threads that are executing are waiting for the results from the threads that are blocked and waiting in the queue because of the non-availability of threads for the execution.</p> <p> <strong>Thread Leakage:</strong> Leakage of threads occurs when a thread is being removed from the pool to execute a task but is not returning to it after the completion of the task. For example, when a thread throws the exception and the pool class is not able to catch this exception, then the thread exits and reduces the thread pool size by 1. If the same thing repeats a number of times, then there are fair chances that the pool will become empty, and hence, there are no threads available in the pool for executing other requests.</p> <p> <strong>Resource Thrashing:</strong> A lot of time is wasted in context switching among threads when the size of the thread pool is very large. Whenever there are more threads than the optimal number may cause the starvation problem, and it leads to resource thrashing.</p> <h2>Points to Remember</h2> <p>Do not queue the tasks that are concurrently waiting for the results obtained from the other tasks. It may lead to a deadlock situation, as explained above.</p> <p>Care must be taken whenever threads are used for the operation that is long-lived. It may result in the waiting of thread forever and will finally lead to the leakage of the resource.</p> <p>In the end, the thread pool has to be ended explicitly. If it does not happen, then the program continues to execute, and it never ends. Invoke the shutdown() method on the thread pool to terminate the executor. Note that if someone tries to send another task to the executor after shutdown, it will throw a RejectedExecutionException.</p> <p>One needs to understand the tasks to effectively tune the thread pool. If the given tasks are contrasting, then one should look for pools for executing different varieties of tasks so that one can properly tune them.</p> <p>To reduce the probability of running JVM out of memory, one can control the maximum threads that can run in JVM. The thread pool cannot create new threads after it has reached the maximum limit.</p> <p>A thread pool can use the same used thread if the thread has finished its execution. Thus, the time and resources used for the creation of a new thread are saved.</p> <h2>Tuning the Thread Pool</h2> <p>The accurate size of a thread pool is decided by the number of available processors and the type of tasks the threads have to execute. If a system has the P processors that have only got the computation type processes, then the maximum size of the thread pool of P or P + 1 achieves the maximum efficiency. However, the tasks may have to wait for I/O, and in such a scenario, one has to take into consideration the ratio of the waiting time (W) and the service time (S) for the request; resulting in the maximum size of the pool P * (1 + W / S) for the maximum efficiency.</p> <h2>Conclusion</h2> <p>A thread pool is a very handy tool for organizing applications, especially on the server-side. Concept-wise, a thread pool is very easy to comprehend. However, one may have to look at a lot of issues when dealing with a thread pool. It is because the thread pool comes with some risks involved it (risks are discussed above).</p> <hr></=>
Uitleg: Als je naar de uitvoer van het programma kijkt, wordt het duidelijk dat taken 4 en 5 alleen worden uitgevoerd als de thread een inactieve thread heeft. Tot die tijd worden de extra taken in de wachtrij gezet.
De conclusie uit het bovenstaande voorbeeld is dat iemand 50 taken wil uitvoeren, maar niet bereid is om 50 threads te maken. In zo'n geval kan men een pool van 10 threads creëren. Zo worden 10 van de 50 taken toegewezen en de rest in de wachtrij geplaatst. Telkens wanneer een van de 10 threads inactief wordt, worden de 11 opgehaaldetaak. De andere openstaande taken worden op dezelfde manier behandeld.
website zoals coomeet
Risico's verbonden aan Thread Pools
Hieronder volgen de risico's die verbonden zijn aan de threadpools.
Impasse: Het is een bekend feit dat een impasse kan optreden in elk programma dat multithreading omvat, en een threadpool introduceert een ander scenario van impasse. Overweeg een scenario waarin alle threads die worden uitgevoerd, wachten op de resultaten van de threads die zijn geblokkeerd en in de wachtrij wachten omdat er geen threads beschikbaar zijn voor uitvoering.
Draadlekkage: Het lekken van threads treedt op wanneer een thread uit de pool wordt verwijderd om een taak uit te voeren, maar er niet naar terugkeert nadat de taak is voltooid. Als een thread bijvoorbeeld de uitzondering genereert en de poolklasse deze uitzondering niet kan onderscheppen, wordt de thread afgesloten en wordt de grootte van de threadpool met 1 verkleind. Als hetzelfde zich een aantal keren herhaalt, zijn de kansen groot dat de pool raakt leeg en daarom zijn er geen threads beschikbaar in de pool voor het uitvoeren van andere verzoeken.
Het geselen van hulpbronnen: Er wordt veel tijd verspild bij het wisselen van context tussen threads wanneer de omvang van de threadpool erg groot is. Wanneer er meer threads zijn dan het optimale aantal, kan dit het uithongeringsprobleem veroorzaken en leidt dit tot het verlies van hulpbronnen.
Punten om te onthouden
Zet de taken die gelijktijdig wachten op de resultaten van de andere taken niet in de wachtrij. Het kan tot een impasse leiden, zoals hierboven uitgelegd.
Voorzichtigheid is geboden wanneer er schroefdraad wordt gebruikt voor een operatie met een lange levensduur. Het kan ertoe leiden dat er voor altijd op draad wordt gewacht en uiteindelijk zal leiden tot het weglekken van de bron.
Uiteindelijk moet de threadpool expliciet worden beëindigd. Als dit niet gebeurt, blijft het programma doorgaan en eindigt het nooit. Roep de methode shutdown() aan op de threadpool om de uitvoerder te beëindigen. Houd er rekening mee dat als iemand na het afsluiten een andere taak naar de uitvoerder probeert te sturen, er een RejectedExecutionException wordt gegenereerd.
Om de threadpool effectief af te stemmen, moet u de taken begrijpen. Als de gegeven taken contrasterend zijn, moet men zoeken naar pools voor het uitvoeren van verschillende soorten taken, zodat men ze goed kan afstemmen.
Om de kans te verkleinen dat JVM onvoldoende geheugen heeft, kan men het maximale aantal threads bepalen dat in JVM kan worden uitgevoerd. De threadpool kan geen nieuwe threads meer maken nadat deze de maximale limiet heeft bereikt.
Een threadpool kan dezelfde gebruikte thread gebruiken als de thread zijn uitvoering heeft voltooid. Zo worden de tijd en middelen die worden gebruikt voor het maken van een nieuwe thread bespaard.
De draadpool afstemmen
De nauwkeurige omvang van een threadpool wordt bepaald door het aantal beschikbare processors en het soort taken dat de threads moeten uitvoeren. Als een systeem de P-processors heeft die alleen de rekentypeprocessen hebben, dan bereikt de maximale grootte van de threadpool van P of P + 1 de maximale efficiëntie. Het kan echter zijn dat de taken moeten wachten op I/O, en in een dergelijk scenario moet men rekening houden met de verhouding tussen de wachttijd (W) en de servicetijd (S) voor het verzoek; resulterend in de maximale grootte van het zwembad P * (1 + W / S) voor maximale efficiëntie.
Conclusie
Een threadpool is een erg handig hulpmiddel voor het organiseren van applicaties, vooral aan de serverkant. Conceptueel gezien is een draadpool heel gemakkelijk te begrijpen. Het kan echter zijn dat je met veel zaken rekening moet houden als je met een threadpool te maken hebt. Dit komt omdat de threadpool een aantal risico's met zich meebrengt (de risico's worden hierboven besproken).
=>10;>