Inleiding tot complexe getallen in Python: Complexe getallen in Python | Set 1 (inleiding) Enkele belangrijkere functies en constanten worden in dit artikel besproken. Bewerkingen op complexe getallen : 1. exp() : - Deze functie retourneert de exponent van het complexe getal dat in zijn betoog wordt genoemd. 2. logboek(xb) : - Deze functie retourneert de logaritmische waarde van x met grondtal b both mentioned in its arguments. If base is not specified natural log of x is returned. Python # Python code to demonstrate the working of # exp() log() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z = complex(x y); # printing exponent of complex number print ('The exponent of complex number is : ' end='') print (cmath.exp(z)) # printing log form of complex number print ('The log(base 10) of complex number is : ' end='') print (cmath.log(z10)) Output: The exponent of complex number is : (1.4686939399158851+2.2873552871788423j) The log(base 10) of complex number is : (0.15051499783199057+0.3410940884604603j)
3. log10() : - Deze functie retourneert de logbasis 10 van een complex getal. 4. sqrt() : - Dit berekent de vierkantswortel of a complex number. Python # Python code to demonstrate the working of # log10() sqrt() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z = complex(x y); # printing log10 of complex number print ('The log10 of complex number is : ' end='') print (cmath.log10(z)) # printing square root form of complex number print ('The square root of complex number is : ' end='') print (cmath.sqrt(z)) Output: The log10 of complex number is : (0.15051499783199057+0.3410940884604603j) The square root of complex number is : (1.09868411346781+0.45508986056222733j)
5. iseindig() :- Retourzendingen waar als zowel reëel als imaginair deel bestaat van complexe getallen zijn eindig anders retourneert false. 6. Voor jou() :- Retourzendingen waar als het een reëel of denkbeeldig deel is van een complex getal is/zijn oneindig anders retourneert false. 7. isnan() : - Geeft waar terug als een reëel of denkbeeldig deel van een complex getal is NaN else returns false. Python # Python code to demonstrate the working of # isnan() isinf() isfinite() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 a = math.inf b = math.nan # converting x and y into complex number z = complex(xy); # converting x and a into complex number w = complex(xa); # converting x and b into complex number v = complex(xb); # checking if both numbers are finite if cmath.isfinite(z): print ('Complex number is finite') else : print ('Complex number is infinite') # checking if either number is/are infinite if cmath.isinf(w): print ('Complex number is infinite') else : print ('Complex number is finite') # checking if either number is/are infinite if cmath.isnan(v): print ('Complex number is NaN') else : print ('Complex number is not NaN') Output: Complex number is finite Complex number is infinite Complex number is NaN
Constanten Er zijn twee constanten gedefinieerd in de cmath-module 'pi' die de numerieke waarde van pi retourneert. De tweede is 'En' which returns the numerical value of exponent. Python # Python code to demonstrate the working of # pi and e # importing 'cmath' for complex number operations import cmath import math # printing the value of pi print ('The value of pi is : ' end='') print (cmath.pi) # printing the value of e print ('The value of exponent is : ' end='') print (cmath.e) Output: The value of pi is : 3.141592653589793 The value of exponent is : 2.718281828459045
Complexe getallen in Python | Set 3 (trigonometrische en hyperbolische functies)