logo

Controleer of rekenkundige progressie kan worden gevormd op basis van de gegeven array

Probeer het eens op GfG Practice ' title=

Gegeven een array van N gehele getallen. De taak is om te controleren of een rekenkundige progressie kan worden gevormd met behulp van alle gegeven elementen. Indien mogelijk drukt u 'Ja' af, anders drukt u 'Nee' af.

Voorbeelden:  

Invoer: arr[] = {0 12 4 8}
Uitgang: Ja
Herschik de gegeven array als {0 4 8 12}, wat een rekenkundige progressie vormt.

Invoer: arr[] = {12 40 11 20}
Uitgang: Nee



Sorteren gebruiken - O(n Log n) Tijd

Het idee is om de gegeven array te sorteren. Controleer na het sorteren of de verschillen tussen opeenvolgende elementen hetzelfde zijn of niet. Als alle verschillen hetzelfde zijn, is rekenkundige progressie mogelijk. Raadpleeg alstublieft - Programma om de rekenkundige voortgang te controleren voor de implementatie van deze aanpak.

Telsortering gebruiken - O(n) Tijd en O(n) Ruimte

We kunnen de benodigde ruimte in methode 3 verminderen als de gegeven array kan worden gewijzigd. 

  1. Vind de kleinste en op een na kleinste elementen.
  2. Vind d = tweede_kleinste - kleinste
  3. Trek het kleinste element af van alle elementen.
  4. Als de gegeven array AP vertegenwoordigt, moeten alle elementen de vorm i*d hebben, waarbij i varieert van 0 tot n-1.
  5. Deel alle gereduceerde elementen één voor één met d. Als een element niet deelbaar is door d, retourneer dan false.
  6. Als array AP vertegenwoordigt, moet het een permutatie van getallen van 0 tot n-1 zijn. We kunnen dit eenvoudig controleren met behulp van telsortering.

Hieronder vindt u de implementatie van deze methode:

C++
// C++ program to check if a given array // can form arithmetic progression #include    using namespace std; // Checking if array is permutation  // of 0 to n-1 using counting sort bool countingsort(int arr[] int n) {  int count[n] = { 0 };    // Counting the frequency  for (int i = 0; i < n; i++) {  count[arr[i]]++;  }    // Check if each frequency is 1 only  for (int i = 0; i <= n-1; i++) {  if (count[i] != 1)  return false;  }    return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression bool checkIsAP(int arr[] int n) {  int smallest = INT_MAX second_smallest = INT_MAX;  for (int i = 0; i < n; i++) {    // Find the smallest and   // update second smallest  if (arr[i] < smallest) {  second_smallest = smallest;  smallest = arr[i];  }    // Find second smallest  else if (arr[i] != smallest  && arr[i] < second_smallest)  second_smallest = arr[i];  }  // Find the difference between smallest and second  // smallest  int diff = second_smallest - smallest;  for (int i = 0; i < n; i++) {  arr[i]=arr[i]-smallest;  }    for(int i=0;i<n;i++)  {  if(arr[i]%diff!=0)  {  return false;  }  else  {  arr[i]=arr[i]/diff;  }  }    // If array represents AP it must be a   // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if(countingsort(arrn))  return true;  else  return false; } // Driven Program int main() {  int arr[] = { 20 15 5 0 10 };  int n = sizeof(arr) / sizeof(arr[0]);  (checkIsAP(arr n)) ? (cout << 'Yes' << endl)  : (cout << 'No' << endl);  return 0;  // This code is contributed by Pushpesh Raj } 
Java
// Java program to check if a given array // can form arithmetic progression import java.io.*; class GFG {  // Checking if array is permutation  // of 0 to n-1 using counting sort  static boolean countingsort(int arr[] int n)  {  int[] count = new int[n];  for(int i = 0; i < n; i++)  count[i] = 0;  // Counting the frequency  for (int i = 0; i < n; i++) {  count[arr[i]]++;  }  // Check if each frequency is 1 only  for (int i = 0; i <= n-1; i++) {  if (count[i] != 1)  return false;  }  return true;  }  // Returns true if a permutation of arr[0..n-1]  // can form arithmetic progression  static boolean checkIsAP(int arr[] int n)  {  int smallest = Integer.MAX_VALUE second_smallest = Integer.MAX_VALUE ;  for (int i = 0; i < n; i++) {  // Find the smallest and  // update second smallest  if (arr[i] < smallest) {  second_smallest = smallest;  smallest = arr[i];  }  // Find second smallest  else if (arr[i] != smallest  && arr[i] < second_smallest)  second_smallest = arr[i];  }  // Find the difference between smallest and second  // smallest  int diff = second_smallest - smallest;  for (int i = 0; i < n; i++) {  arr[i] = arr[i] - smallest;  }  for(int i = 0; i < n; i++)  {  if(arr[i] % diff != 0)  {  return false;  }  else  {  arr[i] = arr[i]/diff;  }  }  // If array represents AP it must be a  // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if(countingsort(arrn))  return true;  else  return false;  }  // Driven Program  public static void main (String[] args)  {  int arr[] = { 20 15 5 0 10 };  int n = arr.length;  if(checkIsAP(arr n))   System.out.println('Yes');  else System.out.println('No');  } } // This code is contributed by Utkarsh 
Python
# Python program to check if a given array # can form arithmetic progression import sys # Checking if array is permutation  # of 0 to n-1 using counting sort def countingsort( arr n): count = [0]*n; # Counting the frequency for i in range(0 n): count[arr[i]] += 1; # Check if each frequency is 1 only for i in range(0 n - 1): if (count[i] != 1): return False; return True; # Returns true if a permutation of arr[0..n-1] # can form arithmetic progression def checkIsAP( arr n): smallest = sys.maxsize; second_smallest = sys.maxsize; for i in range(0n): # Find the smallest and  # update second smallest if (arr[i] < smallest) : second_smallest = smallest; smallest = arr[i]; # Find second smallest elif (arr[i] != smallest and arr[i] < second_smallest): second_smallest = arr[i]; # Find the difference between smallest and second # smallest diff = second_smallest - smallest; for i in range(0n): arr[i]=arr[i]-smallest; for i in range(0n): if(arr[i]%diff!=0): return False; else: arr[i]=(int)(arr[i]/diff); # If array represents AP it must be a  # permutation of numbers from 0 to n-1. # Check this using counting sort. if(countingsort(arrn)): return True; else: return False; # Driven Program arr = [ 20 15 5 0 10 ]; n = len(arr); if(checkIsAP(arr n)): print('Yes'); else: print('NO'); # This code is contributed by ratiagrawal. 
C#
using System;  class GFG  {  // Checking if array is permutation  // of 0 to n-1 using counting sort  static bool CountingSort(int[] arr int n)  {  // Counting the frequency  int[] count = new int[n];  for (int i = 0; i < n; i++)  {  count[arr[i]]++;  }  // Check if each frequency is 1 only  for (int i = 0; i <= n - 1; i++)  {  if (count[i] != 1)  {  return false;  }  }  return true;  }// Returns true if a permutation of arr[0..n-1]  // can form arithmetic progression  static bool CheckIsAP(int[] arr int n)  {// Find the smallest and  // update second smallest  int smallest = int.MaxValue;  int secondSmallest = int.MaxValue;  for (int i = 0; i < n; i++)  {  if (arr[i] < smallest)  {  secondSmallest = smallest;  smallest = arr[i];  }  else if (arr[i] != smallest && arr[i] < secondSmallest)  {  secondSmallest = arr[i];  }  }  int diff = secondSmallest - smallest;  for (int i = 0; i < n; i++)  {  arr[i] = arr[i] - smallest;  }  for (int i = 0; i < n; i++)  {  if (arr[i] % diff != 0)  {  return false;  }  else  {  arr[i] = arr[i] / diff;  }  } // If array represents AP it must be a  // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if (CountingSort(arr n))  {  return true;  }  else  {  return false;  }  } // Driven Program  static void Main(string[] args)  {  int[] arr = new int[] { 20 15 5 0 10 };  int n = arr.Length;  Console.WriteLine(CheckIsAP(arr n) ? 'Yes' : 'No');  }  } 
JavaScript
// Javascript program to check if a given array // can form arithmetic progression // Checking if array is permutation  // of 0 to n-1 using counting sort function countingsort( arr n) {  let count=new Array(n).fill(0);    // Counting the frequency  for (let i = 0; i < n; i++) {  count[arr[i]]++;  }    // Check if each frequency is 1 only  for (let i = 0; i <= n-1; i++) {  if (count[i] != 1)  return false;  }    return true; } // Returns true if a permutation of arr[0..n-1] // can form arithmetic progression function checkIsAP( arr n) {  let smallest = Number.MAX_SAFE_INTEGER second_smallest = Number.MAX_SAFE_INTEGER;  for (let i = 0; i < n; i++) {    // Find the smallest and   // update second smallest  if (arr[i] < smallest) {  second_smallest = smallest;  smallest = arr[i];  }    // Find second smallest  else if (arr[i] != smallest  && arr[i] < second_smallest)  second_smallest = arr[i];  }  // Find the difference between smallest and second  // smallest  let diff = second_smallest - smallest;  for (let i = 0; i < n; i++) {  arr[i]=arr[i]-smallest;  }    for(let i=0;i<n;i++)  {  if(arr[i]%diff!=0)  {  return false;  }  else  {  arr[i]=arr[i]/diff;  }  }    // If array represents AP it must be a   // permutation of numbers from 0 to n-1.  // Check this using counting sort.  if(countingsort(arrn))  return true;  else  return false; } // Driven Program let arr = [20 15 5 0 10 ]; let n = arr.length; (checkIsAP(arr n)) ? (console.log('Yesn'))  : (console.log('Non'));    // // This code was contributed by poojaagrawal2. 

Uitvoer
Yes

Tijdcomplexiteit - O(n) 
Hulpruimte - O(n)

Hashing met Single Pass - O(n) tijd en O(n) ruimte

Het basisidee is om het gemeenschappelijke verschil van de AP te vinden door het maximale en het minimale element van de array te achterhalen. Begin daarna vanaf de maximale waarde en blijf de waarde verlagen met het gemeenschappelijke verschil, terwijl u controleert of deze nieuwe waarde aanwezig is in de hashmap of niet. Als de waarde op enig moment niet aanwezig is in de hashset, verbreek dan de lus. De ideale situatie na het verbreken van de lus is dat alle n elementen zijn afgedekt en als dat zo is, retourneert u waar, anders retourneert u onwaar. 

C++
// C++ program for above approach #include    using namespace std; bool checkIsAP(int arr[] int n) {  unordered_set<int> st;  int maxi = INT_MIN;  int mini = INT_MAX;  for (int i=0;i<n;i++) {  maxi = max(arr[i] maxi);  mini = min(arr[i] mini);  st.insert(arr[i]);  }    // FINDING THE COMMON DIFFERENCE  int diff = (maxi - mini) / (n - 1);  int count = 0;  // CHECK TERMS OF AP PRESENT IN THE HASHSET  while (st.find(maxi)!=st.end()) {  count++;  maxi = maxi - diff;  }    if (count == n)  return true;  return false; } // Driver Code int main() {  int arr[] = { 0 12 4 8 };  int n = 4;  cout << boolalpha << checkIsAP(arr n);  return 0; } // This code is contributed by Rohit Pradhan 
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.*; class GFG {  public static void main(String[] args)  {  int[] arr = { 0 12 4 8 };  int n = arr.length;  System.out.println(checkIsAP(arr n));  }  static boolean checkIsAP(int arr[] int n)  {  HashSet<Integer> set = new HashSet<Integer>();  int max = Integer.MIN_VALUE;  int min = Integer.MAX_VALUE;  for (int i : arr) {  max = Math.max(i max);  min = Math.min(i min);  set.add(i);  }    // FINDING THE COMMON DIFFERENCE  int diff = (max - min) / (n - 1);  int count = 0;  // CHECK IF TERMS OF AP PRESENT IN THE HASHSET   while (set.contains(max)) {  count++;  max = max - diff;  }  if (count == arr.length)  return true;  return false;  } } 
Python
import sys def checkIsAP(arr n): Set = set() Max = -sys.maxsize - 1 Min = sys.maxsize for i in arr: Max = max(i Max) Min = min(i Min) Set.add(i) # FINDING THE COMMON DIFFERENCE diff = (Max - Min) // (n - 1) count = 0 # CHECK IF TERMS OF AP PRESENT IN THE HASHSET  while (Max in Set): count += 1 Max = Max - diff if (count == len(arr)): return True return False # driver code arr = [ 0 12 4 8 ] n = len(arr) print(checkIsAP(arr n)) # This code is contributed by shinjanpatra 
C#
using System; using System.Collections.Generic; public class GFG  {  // C# program for above approach  static bool checkIsAP(int[] arr int n)  {  HashSet<int> st = new HashSet<int>();  int maxi = int.MinValue;  int mini = int.MaxValue;  for (int i = 0; i < n; i++) {  maxi = Math.Max(arr[i] maxi);  mini = Math.Min(arr[i] mini);  st.Add(arr[i]);  }    // FINDING THE COMMON DIFFERENCE  int diff = (maxi - mini) / (n - 1);  int count = 0;  // CHECK IF TERMS OF AP PRESENT IN THE HASHSET   while (st.Contains(maxi)) {  count++;  maxi = maxi - diff;  }  if (count == n) {  return true;  }  return false;  }  // Driver Code  internal static void Main()  {  int[] arr = { 0 12 4 8 };  int n = 4;  Console.Write(checkIsAP(arr n));  }  // This code is contributed by Aarti_Rathi } 
JavaScript
function checkIsAP(arr n){  set = new Set()  let Max = Number.MIN_VALUE  let Min = Number.MAX_VALUE  for(let i of arr){  Max = Math.max(i Max)  Min = Math.min(i Min)  set.add(i)  }    // FINDING THE COMMON DIFFERENCE  let diff = Math.floor((Max - Min) / (n - 1))  let count = 0  // CHECK IF TERMS OF AP PRESENT IN THE HASHSET   while (set.has(Max)){  count += 1  Max = Max - diff  }  if (count == arr.length)  return true  return false } // driver code let arr = [ 0 12 4 8 ] let n = arr.length console.log(checkIsAP(arr n)) 

Uitvoer
true
Quiz maken