Gegeven een getal is het de taak om te controleren of een getal deelbaar is door 16 of niet. Het invoernummer kan groot zijn en het is mogelijk niet mogelijk om op te slaan, zelfs als we long long int gebruiken.
Voorbeelden:
Input : n = 1128 Output : No Input : n = 11216 Output : Yes Input : n = 1124273542764284287 Output : No
Omdat het ingevoerde getal erg groot kan zijn, kunnen we n % 16 niet gebruiken om te controleren of een getal deelbaar is door 16 of niet, vooral in talen als C/C++. Het idee is gebaseerd op het volgende feit.
jquery deze klik
A number is divisible by 16 if number formed by last four digits of it is divisible by 16.
Illustratie:
For example let us consider 769616 Number formed by last four digits = 9616 Since 9522 is divisible by 16 answer is YES.
Hoe werkt dit?
Let us consider 76952 we can write it as 76942 = 7*10000 + 6*1000 + 9*100 + 5*10 + 2 The proof is based on below observation: Remainder of 10i divided by 16 is 0 if i greater than or equal to four. Note that 10000 100000... etc lead to remainder 0 when divided by 16. So remainder of '7*10000 + 6*1000 + 9*100 + 5*10 + 2' divided by 16 is equivalent to remainder of following : 0 + 6*1000 + 9*100 + 5*10 + 2 = 6952 Therefore we can say that the whole number is divisible by 16 if 6952 is divisible by 16.C++
// C++ program to find if a number // is divisible by 16 or not #include using namespace std; // Function to find that // number divisible by 16 or not bool check(string str) { int n = str.length(); // Empty string if (n == 0 && n == 1) return false; // If there is double digit if (n == 2) return (((str[n-2]-'0')*10 + (str[n-1]-'0'))%16 == 0); // If there is triple digit if(n == 3) return ( ((str[n-3]-'0')*100 + (str[n-2]-'0')*10 + (str[n-1]-'0'))%16 == 0); // If number formed by last four // digits is divisible by 16. int last = str[n-1] - '0'; int second_last = str[n-2] - '0'; int third_last = str[n-3] - '0'; int fourth_last = str[n-4] - '0'; return ((fourth_last*1000 + third_last*100 + second_last*10 + last) % 16 == 0); } // Driver code int main() { string str = '769528'; check(str)? cout << 'Yes' : cout << 'No '; return 0; }
Java // Java program to find if a number // is divisible by 16 or not import java.io.*; class GFG { // Function to find that // number divisible by 16 or not static boolean check(String str) { int n = str.length(); // Empty string if (n == 0 && n == 1) return false; // If there is double digit if (n == 2) return (((str.charAt(n-2)-'0')*10 + (str.charAt(n-1)-'0'))%16 == 0); // If there is triple digit if(n == 3) return ( ((str.charAt(n-3)-'0')*100 + (str.charAt(n-2)-'0')*10 + (str.charAt(n-1)-'0'))%16 == 0); // If number formed by last // four digits is divisible by 16. int last = str.charAt(n-1) - '0'; int second_last = str.charAt(n-2) - '0'; int third_last = str.charAt(n-3) - '0'; int fourth_last = str.charAt(n-4) - '0'; return ((fourth_last*1000 + third_last*100 + second_last*10 + last) % 16 == 0); } // Driver code public static void main(String args[]) { String str = '769528'; if(check(str)) System.out.println('Yes'); else System.out.println('No '); } } // This code is contributed by Nikita Tiwari.
Python3 # Python 3 program to find # if a number is divisible # by 16 or not # Function to find that # number divisible by # 16 or not def check(st) : n = len(st) # Empty string if (n == 0 and n == 1) : return False # If there is double digit if (n == 2) : return ((int)(st[n-2])*10 + ((int)(st[n-1])%16 == 0)) # If there is triple digit if(n == 3) : return ( ((int)(st[n-3])*100 + (int)(st[n-2])*10 + (int)(st[n-1]))%16 == 0) # If number formed by last # four digits is divisible # by 16. last = (int)(st[n-1]) second_last = (int)(st[n-2]) third_last = (int)(st[n-3]) fourth_last = (int)(st[n-4]) return ((fourth_last*1000 + third_last*100 + second_last*10 + last) % 16 == 0) # Driver code st = '769528' if(check(st)) : print('Yes') else : print('No') # This code is contributed by Nikita Tiwari.
C# // C# program to find if a number // is divisible by 16 or not using System; class GFG { // Function to find that number // divisible by 16 or not static bool check(String str) { int n = str.Length; // Empty string if (n == 0 && n == 1) return false; // If there is double digit if (n == 2) return (((str[n - 2] - '0') * 10 + (str[n - 1] - '0')) % 16 == 0); // If there is triple digit if(n == 3) return (((str[n - 3] - '0') * 100 + (str[n - 2] - '0') * 10 + (str[n - 1] - '0')) % 16 == 0); // If number formed by last // four digits is divisible by 16. int last = str[n - 1] - '0'; int second_last = str[n - 2] - '0'; int third_last = str[n - 3] - '0'; int fourth_last = str[n - 4] - '0'; return ((fourth_last * 1000 + third_last * 100 + second_last * 10 + last) % 16 == 0); } // Driver code public static void Main() { String str = '769528'; if(check(str)) Console.Write('Yes'); else Console.Write('No '); } } // This code is contributed by Nitin Mittal.
PHP // PHP program to find if a number // is divisible by 16 or not // Function to find that // number divisible by 16 or not function check($str) { $n = strlen($str); // Empty string if ($n == 0 && $n == 1) return false; // If there is double digit if ($n == 2) return ((($str[$n - 2] - '0') * 10 + ($str[$n - 1] - '0')) % 16 == 0); // If there is triple digit if($n == 3) return ((($str[$n -3] - '0') * 100 + ($str[$n - 2] - '0') * 10 + ($str[$n - 1] - '0')) % 16 == 0); // If number formed by last four // digits is divisible by 16. $last = $str[$n - 1] - '0'; $second_last = $str[$n - 2] - '0'; $third_last = $str[$n - 3] - '0'; $fourth_last = $str[$n - 4] - '0'; return (($fourth_last * 1000 + $third_last * 100 + $second_last * 10 + $last) % 16 == 0); } // Driver code $str = '769528'; $x = check($str) ? 'Yes' : 'No '; echo($x); // This code is contributed by Ajit. ?> JavaScript <script> // Javascript program to find if a number // is divisible by 16 or not // Function to find that number // divisible by 16 or not function check(str) { let n = str.length; // Empty string if (n == 0 && n == 1) return false; // If there is double digit if (n == 2) return (((str[n - 2] - '0') * 10 + (str[n - 1] - '0')) % 16 == 0); // If there is triple digit if(n == 3) return (((str[n - 3] - '0') * 100 + (str[n - 2] - '0') * 10 + (str[n - 1] - '0')) % 16 == 0); // If number formed by last // four digits is divisible by 16. let last = str[n - 1] - '0'; let second_last = str[n - 2] - '0'; let third_last = str[n - 3] - '0'; let fourth_last = str[n - 4] - '0'; return ((fourth_last * 1000 + third_last * 100 + second_last * 10 + last) % 16 == 0); } // Driver code let str = '769528'; if (check(str)) document.write('Yes'); else document.write('No '); // This code is contributed by decode2207 </script>
Uitgang:
No
Tijdcomplexiteit: O(1)
Hulpruimte: O(1)
Een andere aanpak (door de bitsgewijze operator AND te gebruiken):
string naar geheel getal converteren
Om te controleren of een groot getal deelbaar is door 16 of niet, zonder de modulo-operator te gebruiken, kunnen we de laatste 4 bits van het getal controleren. Als deze bits allemaal nullen zijn, is het getal deelbaar door 16, anders niet.
Dit komt omdat 16 binair wordt weergegeven als 0b10000, wat betekent dat het een 1 heeft op de 5e bitpositie en allemaal nullen in de onderste 4 bits. Als een getal deelbaar is door 16, moet het dus allemaal nullen in de onderste 4 bits hebben.
Hieronder vindt u de implementatie van bovenstaande aanpak:
C++#include using namespace std; // Function to check if a number is divisible by 16 bool is_divisible_by_16(int num) { int last_four_bits = num & 0b1111; // bitwise AND with 0b1111 to get the last 4 bits return last_four_bits == 0; // check if all 4 bits are 0's } int main() { int num = 769528; if (is_divisible_by_16(num)) { cout << 'Yes' << endl; } else { cout << 'No' << endl; } return 0; }
Java import java.io.*; public class Gfg { // Function to check if a number is divisible by 16 static boolean is_divisible_by_16(int num) { int lastFourBits = num & 0b1111; // bitwise AND with 0b1111 to get the last 4 bits return lastFourBits == 0; // check if all 4 bits are 0's } public static void main(String[] args) { int num = 769528; if (is_divisible_by_16(num)) { System.out.println('Yes'); } else { System.out.println('No'); } } }
Python3 def is_divisible_by_16(num): last_four_bits = num & 0b1111 # bitwise AND with 0b1111 to get the last 4 bits return last_four_bits == 0 # check if all 4 bits are 0's num = 769528 if(is_divisible_by_16(num)): print('Yes') else: print('No')
C# using System; class MainClass { static bool IsDivisibleBy16(int num) { int lastFourBits = num & 0b1111; // bitwise AND with 0b1111 to get the last 4 bits return lastFourBits == 0; // check if all 4 bits are 0's } public static void Main (string[] args) { int num = 769528; if (IsDivisibleBy16(num)) { Console.WriteLine('Yes'); } else { Console.WriteLine('No'); } } }
JavaScript function is_divisible_by_16(num) { let last_four_bits = num & 0b1111; // bitwise AND with 0b1111 to get the last 4 bits return last_four_bits === 0; // check if all 4 bits are 0's } let num = 769528; if (is_divisible_by_16(num)) { console.log('Yes'); } else { console.log('No'); }
Uitvoer
No
Tijdcomplexiteit: O(1)
Hulpruimte: O(1)
In deze code gebruiken we de bitsgewijze AND-operator & met het binaire getal 0b1111 (dat allemaal enen in de onderste 4 bits en 0-en in de bovenste bits heeft) om de laatste 4 bits van het invoernummer num te extraheren. Vervolgens controleren we of deze 4 bits allemaal nullen zijn of niet. Als het allemaal nullen zijn, retourneert de functie True (wat betekent dat het getal deelbaar is door 16), anders retourneert het False.